Phone : 0092 300 7786573

Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 6(5): 192-196
Http://dx.doi.org/10.17582/journal.aavs/2018/6.5.192.196
View Full HTML
Download PDF

I Ketut Puja1, Ni Made Sawitri1, Nisa Maharani1, I Wayan Nico Fajar Gunawan2, Luh Gde Sri Surya Heryani3

1Veterinary Genetics and Reproduction Technology Laboratory, Faculty of Veterinary Medicine, Udayana University, Bali, Indonesia; 2Veterinary Surgery and Radiology Laboratory, Faculty of Veterinary Medicine, Udayana University, Bali, Indonesia; 3Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Udayana University, Bali, Indonesia.

Abstract | The objective of this study was to determined the effects of different extenders on chilled kintamani dog semen quality parameters. In this study, the impact of extenders on motility, viability and DNA integrity of kintamani dog semen were investigated. A total of 12-second fraction of ejaculates were collected from four kintamani dogs using manual stimulation. Sperms were diluted in each of the five extenders at room temperature and then cooled to 40 C. Samples were then evaluated every day until five days. Chilled semen samples were assessed for motility, viability and DNA integrity. Results showed that the progressive motility of the sperm cells was significantly higher in extender A and B compared to other extenders. The extender containing 20% egg yolk and 20 % tender coconut water preserved the motility of more than 60% of the spermatozoa up to the day 5 post-sampling. Percentage of live sperm decreased slightly from day 0 to day 5. There was no significant difference in live spermatozoa due to the extender after five day. The DNA was not unaltered by different of extender and storage refrigeration process. It concluded that kintamani dog semen qualities could be maintained for up five days when semen extended with coconut water-based extender with addition fructose and store at 40C.

Keywords | Kintamni dog, Chilled semen, Motility, Viability, DNA integrity