Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 9(10): 1649-1654
Http://dx.doi.org/10.17582/journal.aavs/2021/9.10.1649.1654
View Full HTML
Download PDF

Fitri Fitri1, Abu Bakar Tawali2*, Amran Laga2, Zaraswati Dwyana3

1Agricultural Science Study Program, Postgraduate School of Hasanuddin University, Perintis Kemerdekaan Street Km. 10 Tamalanrea, Makassar, 90245, Indonesia; 2Food Science and Technology Study Program, Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Perintis Kemerdekaan Street Km. 10 Tamalanrea, Makassar, 90245, Indonesia; 3Department of Biology, Faculty of Math and Science, Hasanuddin University, Perintis Kemerdekaan Street Km. 10 Tamalanrea, Makassar, 90245, Indonesia.

Abstract | Food and non-food fermentation actually use lactic acid bacteria alteration as agent in the production process for enhance the aroma and taste of the product, in the case of civet coffee. This study aimed to determine and identified the ability of enzymes produced by lactic acid bacteria from civet digestion tract. The enzymes analyzed in this study were protease, lipase, and cellulase enzymes. The activity of protease carried out by the Lowry method, the lipase activity used the titrimetric method, while the cellulase activity used dinitrosalicylic (DNS) colorimetric method. The result showed that lactic acid bacteria from civet can produced protease, lipase, and cellulase on different capacity. For the protease enzyme, the highest activity enzyme was produced by Leuconostoc pseudomesenteroides Ni1324 (0.051 U/mL), while the lowest was produced by Weissella cibaria MG5327 (0.041 U/mL). For the lipase enzyme, the highest activity enzyme was produced by Leuconostoc pseudomesenteroides Ni1324 (0.639 U/mL), while the lowest was produced by Weissella cibaria MG5327 (0.306 U/mL). And for the cellulase, the highest activity enzyme was produced by Weissella cibaria MG5327 (0.039 U/mL), while the lowest was produced by Leuconostoc pseudomesenteroides CF102 (0.029 U/mL)

Keywords | Lactic acid bacteria, Enzyme activity, Protease, Lipase, Cellulase