Advances in Animal and Veterinary Sciences

Review Article
Adv. Anim. Vet. Sci. 9(6): 811-822
Http://dx.doi.org/10.17582/journal.aavs/2021/9.6.811.822
View Full HTML
Download PDF

Nor Dini Rusli1,2, Ahmad Afifi Abdul Ghani1, Khairiyah Mat2, Mohd Termizi Yusof3, Mohd Zamri-Saad4, Hasliza Abu Hassim1,5*

1Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 2Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia; 3Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; 4Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; 5Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Abstract | A million tons of agricultural by-products are produced each year. Many farmers in tropical countries used this by-product as the main feed sources for livestock feeding. Nonetheless, most of the agricultural by-products have poor nutritional value, primarily due to high crude fibre content, low crude protein, total fat, energy, mineral and vitamin contents. Similarly, oil palm frond (OPF) contains high lignocellulosic content with low nutritional value which can be important restrictions on the use of OPF as livestock feed. The chemical composition showed that OPF was composed of 70% fibre and 22% soluble carbohydrates on a dry matter (DM) basis. This problem has resulted in reduced animal production. Various approaches were investigated to enhance these feeds, including physical, chemical and biological pretreatments. Biological pretreatment may be amongst the most practical because it is safe and effective in decreasing content of fibre fractions with increased content of crude protein. Further research is required to investigate the biological pretreatment with enzyme extract from white rot fungi to reduce dry matter losses and shorten duration of incubation time. This review highlights the lignocellulose content of the agricultural by-product especially OPF, the shortcomings of rumen microbes in degrading the agricultural by-product and pretreatment strategies for OPF. The review also includes the effect of pretreated OPF on rumen degradability and growth performance. This knowledge can be used in upgrading the OPF as ruminant feed as the basis for future study.

Keywords | Oil palm frond (OPF), Agricultural by-product, Pretreatments, Rumen degradability, Growth performance