Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 2 (2S): 19 - 22. Special Issue-2 (Advances in Diagnosis and Control of Infectious Diseases of Animals)
View Full HTML
Download PDF

Saurabh Majumder, Awadh Bihari Pandey, Muthannan Andavar Ramakrishnan*
Division of Virology, Indian Veterinary Research Institute, Muktheswar, Uttarakhand – 263 138
*Corresponding author:

Bovine herpesvirus 1 (BoHV1) infects mainly cattle and buffalo causing infectious bovine rhinotracheitis (IBR), infectious pustular vulvovaginitis (IPV) and infectious balanopostitis. It is also responsible for bovine respiratory disease complex or shipping fever along with other agents. It causes colossal economic losses due to productive and reproductive losses. Glycoprotein D is one of the most important surface glycoproteins of BoHV1. It induces strong neutralizing antibody response and it is the major protein involved in attachment, penetration and cell fusion. Glycoprotein D is a potential candidate for production of subunit vaccine. In this study amino (N) terminal 1041 bp of gD gene was amplified by using overlapping primers then the amplified fragments were cloned, sequenced and in–silico analysis was carried out. It was found that glycoprotein D of Indian isolate of BoHV1 is having 99.6% sequence identity with the reference sequence (Cooper strain, accession ID AJ004801) and less than 2% divergence with other BoHV1 strains. The deduced amino acid sequence analysis of gD showed a single amino acid change at position 313 which changed from glutamine (Cooper strain) to proline. BoHV1_IBR 216 II had divergence of 9.2%, 11.7% and 8.4% with BoHV–5, CvHV–1 and BuHV1, respectively. Phylogenetic analysis showed that this isolate under study forms same clad with other strains of BoHV1 around the world.

Key Words: BoHV1, glycoprotein D, PCR