Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 9(11): 1838-1843
Http://dx.doi.org/10.17582/journal.aavs/2021/9.11.1838.1843
View Full HTML
Download PDF

Wida W. Mubarokah1, Bambang Sudarmanto1, Wisnu Nurcahyo2, Joko Prastowo2, Kurniasih Kurniasih3, Priyo Sambodo4*

1Politeknik Pembangunan Pertanian Yogyakarta Magelang, JL. Magelang, Kopeng Km. 7 Kotak Pos 152 Tegal Rejo. Magelang, 56101, Indonesia; 2Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Kecamatan Depok, Karangmalang, Karang Gayam, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia; 3Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Kecamatan Depok, Karangmalang, Karang Gayam, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia; 4Department of Animal Science, Papua University, Jl. Gunung Salju, Amban, Manokwari, Papua Barat, 98314, Indonesia.

Abstract | Ascaridia galli (A. galli), a parasitic roundworm, is most frequently found in birds and can inflict economic loss. Treatment and prevention of infection by the worm are achieved through various methods, such as by using plants containing antiparasitic agents. The aim of this study was to investigate the ovicidal and larvicidal activities of and ultrastructural changes caused by Areca catechu crude aqueous extract (AAE) in eggs and larvae (L2) in vitro. The ovicidal and larvicidal activities were tested by soaking eggs, eggs containing embryos, and larvae (L2) for 48 h at 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, and 25% AAE. The positive control was 5% pyrantel pamoate and the negative control was 0.62% saline water. Subsequently, the dead and the live eggs, the eggs containing embryos, and the L2 larvae were counted, and the eggs and L2 larvae were examined using scanning electron microscopy (SEM). The 12.5–25% AAE had significantly different ovicidal and larvicidal activities (p < 0.05) compared to the control. The most intense ovicidal and larvicidal activities occurred at 25% AAE, but they did not differ significantly from the ovicidal, larvicidal, and vermicidal activities of the positive control (pyrantel pamoate; p > 0.05). The SEM results showed that there were shrinkages, ruptures, and general damages on the surfaces of the egg walls. Additionally, the anterior teguments of the L2 larvae shrank and the cuticles got ruptured at 25% AAE. It can be concluded that AAE has ovicidal and larvicidal activities against A. galli and can thus be used as an anthelmintic.

Keywords | Betel nut, Ascaridia galli, Ovicidal, Larvicidal, Ultrastructure