Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 9(9): 1368-1375
View Full HTML
Download PDF

Endang Widiastuti, Tri Agus Sartono, Hanny Indrat Wahyuni, Retno Murwani, Turrini Yudiarti, Anugrah Robby Pratama, Sugiharto Sugiharto*

Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia.

Abstract | The aim of the study was to determine the impact of graded levels of A. bilimbi-acidified papaya leaf and seed meal (APLS) on growth performance, physiological conditions and intestinal ecology of broilers. Two hundred broiler chicks were grouped into CONT (chicks provided control diet), ACID1 (chicks provided with diet containing 1% APLS), ACID25 (diet containing 2.5% APLS) and ACID5 (diet containing 5% APLS). The ratio between the acidified papaya leaf meal and seed meal in the mixture was 3:1. Live body weight and feed consumption were weekly recorded. At day 35, the birds were blood sampled and slaughtered. The use of APLS in diets had no substantial effect (P > 0.05) on final weight and weight gain of broilers. Dietary inclusion of APLS linearly increased (P < 0.05) the accumulative feed consumption of broilers. Inclusion of APLS, particularly at the level of 5%, compromised (P < 0.05) feed conversion ratio (FCR) of broilers when compared to that of control. The graded levels of APLS in diets linearly increased (P < 0.05) the gizzard weight. Total cholesterol and low-density lipoprotein (LDL)-cholesterol were higher (P < 0.05) in ACID1 than in other treatment groups. High-density lipoprotein (HDL)-cholesterol tended (P = 0.08) to be higher in ACID1 than in other groups. The increased levels of APLS in feed linearly increased (P < 0.05) HDL to LDL ratio, while linearly decreased (P = 0.06) cholesterol to HDL ratio of broilers. The elevated levels of APLS in feed tended (P = 0.08) to decrease the pH values of duodenum. There was no significant effect of APLS on final body weight and weight gain, intestinal bacterial populations, complete blood counts, carcass and commercial cuts of broilers. In conclusion, dietary inclusion of APLS at 5% compromised FCR, but improved serum lipid profile of broilers. The high fibre content of APLS may limit the use of such alternative feed ingredients in broiler feeds. Overall, the APLS can be used up to 2.5% in broiler chicken diets without causing harm to their growth, physiological conditions, and intestinal ecology.

Keywords | Acidifier, Averrhoa bilimbi fruit filtrate, Broiler, Intestinal ecology, Feed conversion, Lipid profile