Advances in Animal and Veterinary Sciences

Research Article
Adv. Anim. Vet. Sci. 9(1): 63-72
Http://dx.doi.org/10.17582/journal.aavs/2021/9.1.63.72
View Full HTML
Download PDF

Tran Thi Bich Ngoc1*, Tran Thi Thanh Thao1, Pham Van Dung2

1National Institute of Animal Science, Hanoi, Vietnam; 2Alliance of Bioversity International and International Center for Tropical Agriculture.

Abstract | The effects of different fibre sources in pig diets on growth performance, ammonia (NH3), hydrogen sulphide (H2S), greenhouse gas (GHG) emissions and slurry characteristics was studied on 20 crossbred pigs [Duroc x F1 (Landrace x Yorkshire)]. The experimental diets included one low-fibre (LF) diet without maize distiller’s dried grains with solubles (DDGS), brewer’s grain (BG) and coconut cake (CC) and 3 high-fibre (HF) diets with maize DDGS or BG or CC. The experiment was conducted according to a completely randomized design with 5 replications and lasted 62 days. In the growing period and the overall, pigs fed diets LF and HF-DDGS had higher average daily gain (ADG) compared to pigs fed diets HF-BG and HF-CC (P < 0.05), wheareas the ADG was lower for pigs fed diets HF-BG and HF-CC than for diet LF (P < 0.05) in the fattening period. There was lower FCR for diets LF and HF-DDGS than for diets HF-BG and HF-CC (P < 0.05) in both periods and overall. In the growing and fattening pigs, diets didn’t affect N and P intake, slurry DM content (%) and amount of slurry (kg/head/day), slurry P content (%DM) (P > 0.05), while N and P excretions (g/head/day) were greater for diet HF-CC than for diet LF (P < 0.05). The CO2 emission was greater for diets HF-BG and HF-CC than for diets LF and HF-DDGS (P < 0.0001) in the growing period, but not for fattening period (P > 0.05). In both periods, CH4 emission was lower in diet LF than in diet HF-BG and HF-CC (P < 0.05), while NH3 emission was higher for pigs fed diet LF than pigs fed HF-BG and HF-CC (P < 0.05). The H2S emission was not affected by diets in both periods. In conclusion, different fibre sources in pig diets may be a practical method to alter growth performance, slurry characteristics and NH3, GHG emissions.

Keywords | Fibre source, Emission, Growth performance, Pig diet, Slurry