Serosurvey of Peste des Petits Ruminants in Small Ruminants in the Hilly Terrain North-Eastern State of Sikkim in India

Vinayagamurthy Balamurugan1*, Bibitha Varghese1, Dhanavel Muthuchelvan2, Kirubakaran Vinod Kumar1, Karuna Chetttri3, Kuralayanapalya Puttahonnappa Suresh1, Gurrappanaidu Govindaraj1, Divakar Hemadri1, Parimal Roy1

1Indian Council of Agricultural Research–National Institute of Veterinary Epidemiology and Disease Informatics (ICAR–NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru-560064, Karnataka, India; 2Division of Virology, Indian Veterinary Research Institute (IVRI) Campus, Mukteswar–263138, Nainital, Uttarakhand, India; 3Department of Animal Husbandry Livestock, Fisheries and Veterinary Services, Government of Sikkim, Krishi Bhawan, Tadong–737102, Gangtok, Sikkim, India.

Abstract | This cross-sectional serosurvey outlines the seroprevalence of peste des petits ruminants (PPR) in small ruminants in the hilly terrain north-eastern state of Sikkim in India. A total of 776 small ruminants (sheep [n = 99] and goats [n = 677]) serum samples were collected from 62 epidemiological units (epi-units) of the state using a two-stage sampling method from September 2017 to February 2018. The collected sera were screened for the small ruminant morbillivirus (SRMV) antibodies using a PPR-competitive enzyme-linked immunosorbent assay (cELISA). The results showed 1.16% (95% confidence interval [CI]: 0.61-2.19%) apparent prevalence with almost zero calculated true prevalence, which implies the insignificant prevalence of SRMV antibodies in the small ruminants population. Further, only a few samples from <5 % epi-units have shown positive for SRMV antibodies with an overall seropositive of <30% in the surveyed epi-units in Sikkim. This report is first of its kind on the seroprevalence of PPR in a unique niche of hilly terrain settings and it implies that SRMV has not yet become established in the small ruminants in Sikkim, despite the enzootic nature of the disease in the rest of India. This necessitates the imposing of strict quarantine measures and restrictions in the small ruminants trade along with the implementation of the intensive active surveillance programme to make a PPR free state.

Keywords | Cross-sectional study, Peste des petits ruminants, Seroprevalence, Small ruminants, Sikkim, India.

INTRODUCTION

Peste des petits ruminants (PPR), is an acute, highly contagious, World Organisation for Animal Health (OIE) notifiable transboundary viral disease of sheep and goats and is caused by the small ruminant morbillivirus (SRMV), formerly known as peste des petits ruminants virus (PPRV). Clinically, the disease is characterised by high fever (pyrexia), oculo-nasal discharge, stomatitis, gastrointestinal enteritis, diarrhoea, and bronchopneumonia (Balamurugan et al., 2014b). The disease poses a heavy threat to the national economy of the enzootic countries (Balamurugan et al., 2014b) and it significantly impacts the small ruminants sector. After eradication of rinderpest, a global consensus on PPR Global Control and Eradication Strategy (GCES) has been reached on the need to control and eradicate the disease by 2030 (OIE and FAO, 2015). The Food and Agriculture Organization of the United Nations (FAO) and OIE launched an initial PPR Global Eradication Programme (PPR–GEP) for the period 2017–2021...
In India, PPR was first reported in 1987, and it continued to be present in Southern India until 1994 (Balamurugan et al., 2014b). Later, several PPR outbreaks were reported from the northern states (Singh et al., 2004a; Balamurugan et al., 2012) and the North-Eastern region (NER) since 2010 (Balamurugan et al., 2014a). In enzootic India, several outbreaks have occurred in the past and now are occurring throughout the country (Balamurugan et al., 2016) and cause major constraints in augmenting the productivity of small ruminants with an annual estimated financial loss of Indian rupees 16,110 million (Govindaraj et al., 2016). India initiated the national control programme for PPR (PPR-CP) using its resources based on the available epidemiological data, indigenously developed robust diagnostics, and vaccines to mitigate the disease burden. India practiced focused vaccination in outbreak places since 2002 and the strategic vaccination programme approach in some of the states (Balamurugan et al., 2016; Govindaraj et al., 2019) by launching national PPR–CP from 2010–2011 to control and eradicate PPR even before the global framework was established (Balamurugan et al., 2016). All the southern peninsular states and Union Territories (UTs) adopted strategic vaccination in the first phase, and the remaining states and UTs of India were included in the second phase from 2014-2015 (Balamurugan et al., 2016). However, some of the UTs and states including the unique geographical location have not implemented the vaccination, due to the low incidence or no outbreaks of PPR experienced in these States or UTs (Balamurugan et al., 2019; 2020 a; b). In NER, the first confirmed outbreak was recorded in Assam during 2010, and subsequently, different outbreaks were reported from Assam and Tripura states (Balamurugan et al., 2014a; De et al., 2016; Devi et al., 2016). Nevertheless, the majority of the reports from India represent only the regional isolated data using a limited number of samples (Singh et al., 2004a; Raghavendra et al., 2008; Balamurugan et al., 2011; 2014a; 2020 a; b; De et al., 2016; Devi et al., 2016). Furthermore, neither systematic post-vaccination monitoring nor any sero-surveillance or monitoring plan was undertaken except a few organized studies, that represents a zone or state/UT (Balamurugan et al., 2019; 2020b; c). The results from different studies in India demonstrated the widespread nature of the disease except for the Andaman Nicobar archipelago (Singh et al., 2004a; Raghavendra et al., 2008; Balamurugan et al., 2011, 2012; 2014a,c, 2016, 2019; 2020 a; b; c). The measurement of the prevalence of SRMV antibodies in different geographical locations with varying agro-climatic conditions is essential to develop PPR specific control strategies.
RESULTS AND DISCUSSION

On screening of the 776 serum samples, the observed apparent and calculated true seroprevalence was 1.16% and -0.005 %, respectively (Table 1). The district-wise details of the sera collected during the survey and its test results are summarised in Table 1. Only a few samples (n=9) from seven epi-units (Darap, Gyalshing, Phamthang, Paiyong (Kerabari), Navey, Luing, Nambu villages) have shown positive if PI cut-off set as ≥ 40%, whereas only four samples from two epi-units (Gyalshing and Nambu villages) have shown positive if PI cut-off set as ≥ 50%, with an overall, <30% seropositive animals in all the tested epi-units of Sikkim.

In Sikkim, goats and sheep together constitute around 38% of the state livestock and over 65% of the rural poor landless farmers are widely rearing Shingharey goats, which are medium-sized and distinct from Black Bengal and other graded breeds (Anonymous 2020). Information on the prevalence of SRMV antibodies in different species has been reported from various enzootic countries (Almeshay et al., 2017; Acharya et al., 2018; Dayhum et al., 2018; Burns et al., 2019) including some studies from India with varying levels of seroprevalence (Singh et al., 2004a; Raghavendra et al., 2008; Balamurugan et al., 2014a; 2016; 2020a; b; Devi et al., 2016). The present study defines the prevalence of SRMV antibodies in small ruminants in Sikkim and generated evidence of a very low apparent seroprevalence, which might be due to the collected random samples were from apparently healthy animals and not from PPR suspected animals. Further, it also could be due to an ecological unique terrain and topology that restricts movements of animals from other regions, the low population density and availability of less grazing area leading to reduced transmission of the virus between animals, as close contact of small ruminants is needed for acquiring and spread of infection. Further, intermixing of these populations with sheep and goats from the rest of the country is usually limited because of the very narrow connecting geographical passage to the state.

The results from the study were concurrent with the earlier reported data from the other states in the NER including unique geographical areas having relatively less population density (Singh et al., 2004a; Balamurugan et al., 2014a; 2020b, De et al., 2016; Devi et al., 2016). The seroprevalence of less than 2.0 % has been reported in relatively low population density of small ruminants and geographically isolated hilly states (Himachal Pradesh, Assam, Meghalaya, and Tripura) and island (Andaman and Nicobar Islands) region of India (Singh et al., 2004a; Balamurugan et al., 2019). Further, Balamurugan et al. (2020b) reported that the prevalence of 34.3%, 10.3%, 4.7%, 15.7%, 14.7%, and 5.5% SRMV antibodies in small ruminants in Assam,
Table 1: District-wise details of samples tested and its results for small ruminant morbillivirus antibodies in sheep and goats in Sikkim

<table>
<thead>
<tr>
<th>Name of the district</th>
<th>No. of the tehsil/block surveyed</th>
<th>No. of village having >200 small ruminants included in the survey</th>
<th>Targeted village as per proportion with 10% attrition rate</th>
<th>No. of the village/epi-unit surveyed</th>
<th>No. of the samples collected and tested (No. of samples positive)*</th>
<th>Apparent Prevalence of SRMV antibodies (% (CI-value at 95%))</th>
<th>True Prevalence of SRMV antibodies</th>
<th>Sero-prevalence of <30% in No. of epi-units</th>
</tr>
</thead>
<tbody>
<tr>
<td>East district</td>
<td>3</td>
<td>66</td>
<td>20</td>
<td>20</td>
<td>231 (2) 11 (0)</td>
<td>0.87 (0.24-3.11) 0 (0-0.25) 0.91 (0.25-3.25) -0.008 -0.018 -0.008 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North district</td>
<td>2</td>
<td>21</td>
<td>6</td>
<td>5</td>
<td>64 (0) 11 (0)</td>
<td>0 (0-0.66) 0 (0-0.25) 0 (0-0.67) -0.018 -0.018 -0.018 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South district</td>
<td>2</td>
<td>66</td>
<td>20</td>
<td>13</td>
<td>175 (2) 33 (1)</td>
<td>1.14 (0.31-4.07) 3.03 (0.54-15.32) 0.7 (0.12-3.87) -0.005 -0.016 -0.010 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West district</td>
<td>2</td>
<td>78</td>
<td>24</td>
<td>24</td>
<td>306 (5) 44 (0)</td>
<td>1.63 (0.7-3.76) 0 (0-0.83) 1.91 (0.82-4.39) 0.000 -0.018 0.003 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>231</td>
<td>70</td>
<td>62</td>
<td>776 (9) 99 (1)</td>
<td>1.16 (0.61-2.19) 1.01 (0.18-5.5) 1.18 (0.6-2.31) -0.005 -0.006 -0.005 62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval; SRMV: small ruminant morbillivirus; *Parenthesis: No. of the samples positive for SRMV antibodies.

Manipur, Meghalaya, Mizoram, Nagaland, and Tripura states, respectively with an overall 14.5% seroprevalence using stratified random sampling. All these studies, generally indicate the variation in the observed seroprevalence, which could be due to differences in the uniqueness of the geography or topology, sample size, sampling methods, prevailing animal husbandry and management practices, humidity, or season as reported earlier (Singh et al., 2004a).

From this study, it is possible to say (with 95% confidence) that fewer than 5% of villages out of 231 villages in the sampling frame in Sikkim have circulating PPR, but less than 30% antibody-positive animals in the epi-units. Nevertheless, the presence of SRMV antibodies in animals indicates that the population was exposed to SRMV infection naturally either directly or indirectly as the state has not practiced PPR vaccination. A few positive animals in Sikkim might be due to the introduction of earlier PPR vaccinated or recovered SRMV infected animals from the other geographical areas. Several published reports have generally indicated that most positive animals have migrated from neighbouring states (Singh et al., 2004a; Raghavendra et al., 2008; Balamurugan et al., 2011; 2012; 2014a;c; 2020b). These animals might have been brought by nomads or migrated shepherds from neighbouring states or through porous international borders of India in different phases of inhabitation and rehabilitation of migrated or settled shepherds. Therefore, to maintain the low prevalence or incidence levels or free status of PPR, transboundary migration of animals must be monitored in Sikkim and its border areas, which would be highly essential to protect this region. Since the susceptible small ruminants in Sikkim including some places in NER (Balamurugan et al., 2014a; 2020b; De et al., 2016; Devi et al., 2016) is naïve and there exists a high risk of acquiring SRMV infection if close contact happens with introduced infected animals from northern India or from the neighbouring states, where the disease is enzootic (Singh et al., 2004a; Balamurugan et al., 2014b; 2011).

Nonetheless, in this study, we could not examine prevalence variation due to unavailability of demographic data like sex, breed, flock dynamics, seasons, health status, husbandry practices, etc, and additionally, the target epi-units in the north and south Sikkim districts could not be covered due to administrative issues. FAO/OIE Global strategy for PPR eradication is generally based on understanding the epidemiological factors and risk-based vaccination coverage followed by surveillance. These baseline data are one of the primary requirements for disease control along with vaccine and diagnostic support in stage I of Global strategy. Now, India is in stage 2 (final phase), therefore, we have assessed only the prevalence status to plan the future strategy in the remote areas state for control and eradication of PPR.
This study provides information on the seroprevalence of PPR in the unique geographically located hilly terrain Sikkim state in India with only fewer than 5% of villages in the state have circulating PPR but with <30% seropositive animals in the surveyed villages. It implies that the SRMV has not yet become established in the small ruminants in Sikkim and the state is naïve immune to PPR incursion from the rest of the enzootic states of India and entry from surrounding border countries. Hence, to protect the state from PPR, strict restrictions and quarantine measures need to be adopted along with the implementation of the active surveillance programme and legal framework. Furthermore, it is imperative for the intensive surveillance of sporadic outbreaks in different clinical forms of the disease, thereby control and eradication of the disease can be achieved and subsequently acquiring the disease-free status. Nevertheless, at the time of declaring India provisionally free from PPR, further prevalence/surveillance study of PPR in the Sikkim also needs to be carried out as per Global Control and Eradication Strategy sampling guidelines to support and demonstrate disease-free status in unvaccinated small ruminants in a unique hilly terrain north-eastern region of India.

ACKNOWLEDGEMENTS

The authors wish to thank the Indian Council of Agricultural Research (ICAR), New Delhi, India, for providing facilities and financial support of the Institute project (IXX14475) and the ICAR–National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) staff for their constant support and encouragement always. The authors also thank the Investigators from, All India Coordinated Research Project on Animal Disease Monitoring and Surveillance (AICRP on ADMAS), Coordinating centre of ICAR–NIVEDI, Tadong, Sikkim for sending the serum samples to monitor the status of livestock diseases in Sikkim. The authors are thankful to the staff for their constant support and encouragement always. The authors also thank the Investigators from, All India Coordinated Research Project on Animal Disease Monitoring and Surveillance (AICRP on ADMAS), from, All India Coordinated Research Project on Animal Disease Monitoring and Surveillance (AICRP on ADMAS), Collabrating centre of ICAR–NIVEDI, Tadong, Sikkim for sending the serum samples to monitor the status of livestock diseases in Sikkim.

CONCLUSION AND RECOMMENDATIONS

This study provides information on the seroprevalence of PPR in the unique geographically located hilly terrain Sikkim state in India with only fewer than 5% of villages in the state have circulating PPR but with <30% seropositive animals in the surveyed villages. It implies that the SRMV has not yet become established in the small ruminants in Sikkim and the state is naïve immune to PPR incursion from the rest of the enzootic states of India and entry from surrounding border countries. Hence, to protect the state from PPR, strict restrictions and quarantine measures need to be adopted along with the implementation of the active surveillance programme and legal framework. Furthermore, it is imperative for the intensive surveillance of sporadic outbreaks in different clinical forms of the disease, thereby control and eradication of the disease can be achieved and subsequently acquiring the disease-free status. Nevertheless, at the time of declaring India provisionally free from PPR, further prevalence/surveillance study of PPR in the Sikkim also needs to be carried out as per Global Control and Eradication Strategy sampling guidelines to support and demonstrate disease-free status in unvaccinated small ruminants in a unique hilly terrain north-eastern region of India.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

STATEMENT OF ANIMAL RIGHTS

The manuscript does not contain animal experimental trial. No ethical clearance is required for collecting small volumes of blood samples required for seroepidemiological studies, as per CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals) guidelines. Moreover, samples were collected by well-trained veterinarians concerning animal welfare regulations.

AUTHORS CONTRIBUTION

VB designed the work with overall monitoring, analyzed the data and drafted, and edited the manuscript. DM provided diagnostic support. KVK and GG analyzed the data and edited the manuscript. KC collection and transportation of the samples. KPS, DH designed the sample plan, managed the samples, and prepared GIS map for the study area. PR provided guidance and support in research work. All authors read, and approved the final manuscript.

REFERENCES

• Balamurugan V, Govindaraj GN, Rahman H (2016). Planning, implementation of peste des petits ruminants control programme and strategies adopted for disease control in...

