Ultrasonographic Abnormalities in Canine Urinary and Prostatic Affections

SHIMAA GHANEM YEHIA*, NOHA YOUSEF SALEM

Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt.

Abstract | Ultrasonography is one of the most superior modalities for diagnosis of numerous urinary and prostatic affections. The current study aimed to diagnose and stipulate different cases of dogs with urinary and prostatic affections on basis of clinical and ultrasonographic findings. Thirty-two dogs of different ages, sexes, and breeds were involved in this study, clinical signs were recorded at time of admission and the definitive diagnosis was upon ultrasound examination. The most consistent clinical signs observed at time of admission were dysuria, hematuria, pollakuria, polydipsia and polyuria. Diagnosed urinary bladder affections (No=18) included cystitis, cystic calculi, cystic neoplasms, and bladder hemorrhage. Kidney affections (No=8) included renal cyst, hydronephrosis, nephrolithiasis, chronic interstitial nephritis and end-stage kidney failure. Prostatic affections (No=6) involved benign prostatic hyperplasia, prostatitis and prostatic cysts. Clinical examination and ultrasonography were the main diagnostic aids in all cases. Clinical examination was unsuccessful to establish a definitive diagnosis and ultrasonography was preferable to conventional tools of this specification.

Keywords | Dogs, Clinical signs, Urinary, Prostatic affections, Ultrasound

INTRODUCTION

In veterinary practice, ultrasound imaging possesses plentiful advantages and with minimal biological hazards recorded even with repeated utilization making ultrasound safe diagnostic tool for both patients and operating personals (Preston and Shaw, 2001).

Ultrasonographic assessment of the urinary tract has become a routine practice in veterinary medicine (Nyang and Matton, 2014). Urinary ultrasonography offers outstanding visualization and monitoring of organs, particularly when conventional radiographic assessment fails to reach final diagnosis (Larson, 2009).

Prostatic affections are more frequent in dogs compared to other domestic animals. Canine prostatic affections often give overlapping signs making final diagnosis much more difficult to achieve based only on symptoms (Smith, 2008).

Prostatic hyperplasia, inflammation, cysts and neoplasia are the most common affections recorded in dogs; benign hyperplasia is a disease of both man and dogs. Clinical findings even accompanied with digital rectal findings can provide presumptive diagnosis, however, the precise and final diagnosis could be reached only via ultrasonographic assessment (Nicola, 2006; Paclikova et al., 2006; Kiber et al., 2012; Boucif et al 2015).

Consequently, the current study was accomplished to investigate selected different urinary and prostatic affections in dogs.

MATERIAL AND METHODS

Thirty-two dogs (N=32) of different ages, sexes, and breeds were involved in this study; the dogs were referred to small animal medicine–teaching hospital, faculty of veterinary medicine, Cairo University, Egypt.
Clinical examination findings and clinical signs were recorded at the time of admission. The urinary bladder was scanned at pubic area and wall thickness was assessed according to method described by Dennis et al. (2010).

For examination of kidney, ventral approach with animal held in dorsal recumbency was applied using 5 MHZ convex probe to obtain transverse and sagittal planes. Kidneys scanned over the last two intercostal spaces on the right and just caudal to the last rib on the left for visualization of right and left kidneys. Standard transverse and sagittal planes of the kidney were performed according to Barr and Gaschen (2011).

The prostate was scanned while the animals in lateral, ventrodorsal recumbency or in the standing position in large dogs. Transcutaneous sagittal and transverse scans were achieved using 5 MHz probe. The bladder was first recognized as described before (Atalan et al., 1998) and the transducer then moved caudally to the neck of the bladder and then to the prostate. A moderately full bladder aided localization of the prostate (Leroy et al., 2013).

Table 1: The most consistent clinical signs recorded in diseased dogs with different urinary and prostatic affections

<table>
<thead>
<tr>
<th>Affection</th>
<th>No of cases</th>
<th>Clinical signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystitis</td>
<td>8</td>
<td>Frequent attempts to micturate, with the passage of small amounts of cloudy or bloody urine.</td>
</tr>
<tr>
<td>Cystic calculi</td>
<td>5</td>
<td>Bloody urine, pollakuria and dysuria</td>
</tr>
<tr>
<td>Cystic neoplasms</td>
<td>4</td>
<td>Hematuria is the common presenting sign, with frequent and/or dysuria.</td>
</tr>
<tr>
<td>Bladder hemorrhage</td>
<td>1</td>
<td>Hematuria and history of trauma.</td>
</tr>
<tr>
<td>Renal cysts</td>
<td>1</td>
<td>Abdominal distention, vomiting, anorexia, polydipsia, polyuria and weight loss</td>
</tr>
<tr>
<td>Hydronephrosis</td>
<td>1</td>
<td>Acute abdomen, hematuria.</td>
</tr>
<tr>
<td>End-stage renal failure</td>
<td>3</td>
<td>Off-food, lethargy, vomiting</td>
</tr>
<tr>
<td>Nephrolithiasis</td>
<td>1</td>
<td>Off-food, abdominal pain, dysuria</td>
</tr>
<tr>
<td>Chronic interstitial nephritis</td>
<td>2</td>
<td>Anorexia, lethargy, polyuria</td>
</tr>
<tr>
<td>Benign prostatic hyperplasia</td>
<td>3</td>
<td>constipation and tenesmus</td>
</tr>
<tr>
<td>Prostatic cyst</td>
<td>2</td>
<td>constipation and tenesmus</td>
</tr>
<tr>
<td>Prostatitis</td>
<td>1</td>
<td>Dysuria, stranguria Pyuria, and a discharge from the penis.</td>
</tr>
</tbody>
</table>

RESULTS

The most consistent clinical signs observed at time of admission were recorded in Table 1. The affections were classified into urinary affections (26/32) and prostatic affections (6/32). The final diagnosis was completed based on the ultrasonographic findings.

Figure 1: Ultrasonographic findings in renal affections

- a: Sagittal scan of kidney in 8-years-old Griffon male dog with history of abdominal distention, vomiting, anorexia, polydipsia and polyuria showing anechoic, smooth-margined, round defect in the renal tissue measuring (1.7x1.6 cm) with distal acoustic enhancement. Diagnosis: Renal cyst,
- b: Sagittal scan of kidney in 10-years-old Griffon bitch with history of acute abdomen and hematuria showing dilated renal pelvis containing anechoic fluid and measuring (1.15 cm) with increased echogenicity of renal cortex (0.657 cm). Diagnosis: Hydronephrosis,
- c: Sagittal scan of kidney in 8-years-old Great Dane male dog with history of Off-food, lethargy, vomiting showing small and irregular kidney measuring (4x2.9 cm), with increased cortical echogenicity and poor corticomedullary junction. Diagnosis: End-stage renal failure;
- d: Sagittal scan of kidney in 5-years-old German shepherd dog with history of off-food, abdominal pain, dysuria showing hyperechoic, discrete foci which cause marked acoustic shadowing. Diagnosis: Nephrolithiasis;
- e: Sagittal scan of kidney in 7-years-old Labrador Retriever dog with history of anorexia, lethargy, polyuria showing poor corticomedullary junction, diffuse hyperechoic cortical infiltration, increased cortical (0.48 cm) to medullar (0.32 cm) diameter. Diagnosis: Chronic interstitial nephritis;
- f: Sagittal scan of kidney in 11-years-old Griffon dog with history of anorexia, lethargy, polyuria showing poor corticomedullary junction, diffuse hyperechoic cortex, increased cortical (0.95 cm) to medullar (0.49 cm) diameter. Diagnosis: Chronic interstitial nephritis.
In the present study, urinary bladder affections (18/56.25%), included cystitis (8/32, 25%), cystic calculi (5/32, 15.6%), cystic neoplasms (4/32, 12.5%) and bladder hemorrhage (1/32, 3.12%). Kidney affections (8/32, 25%) involved renal cyst (1/32, 3.12%), hydronephrosis (1/32, 3.12%), nephrolithiasis (1/32, 3.12%), chronic interstitial nephritis (2/32, 6.25%) and end-stage kidney failure (3/32, 8.5%). In the present investigation, prostatic affections constituted (6/32, 18.75%) of urinary cases.

The renal affections diagnosed via ultrasound examination included renal cyst in which the presence of anechoic, smooth-margined, round defect in the renal tissue with distal acoustic enhancement was recognized (Figure 1a). Hydronephrosis identified as dilatation of the renal pelvis with anechoic region on ultrasonographic scan (Figure 1b).

In case of end-stage renal failure, ultrasound scan revealed small and irregular outline kidney, with increased cortical echogenicity and poor corticomedullary junction (Figure 1c). Nephrolithiasis diagnosed as hyperechoic, discrete foci that cause marked acoustic shadowing within the renal tissue (Figure 1d). In case of chronic interstitial nephritis, the ultrasonographic examination revealed poor corticomedullary junction and diffuse hyperechoic cortical infiltration (Figure 1e and 1f).

Regarding urinary bladder and urethral affections, ultrasonographic scanning showed diffuse thickening of the bladder wall, which most obvious in the cranioventral region in case of chronic cystitis (Figure 2a and 2b). Cystic calculi identified ultrasonographically as hyperechoic foci or masses within the bladder lumen. Acoustic shadowing was marked, particularly with high-frequency transducers (Figure 2c). In case of Cystic neoplasms, ultrasonographic examination revealed the presence of large mass with a variable echopatteren extending into the lumen of the bladder (Figure 2d). Ultrasonographic examination showed the presence of large, organized clots that has a hyperechoic lacelike appearance in Bladder hemorrhage (Figure 2e).

The prostatic ultrasonographic examination findings revealed enlarged prostate but retains its shape, symmetry and smooth margin. The echotexture was unchanged, but the echogenicity was slightly more prominent in case of benign prostatic hyperplasia (BPH) (Figure 3a). Prostatic cysts were recorded in two patients with enlarged and hyperechoic prostate than normal with presence of intra-prostatic cyst containing clear anechoic fluid (Figure 3b and 3c). Prostatitis was also recorded in 8-years- old Rottweiler dog, ultrasonographic examination revealed the presence of focal areas of anechoic or hypoechoic areas representing inflammatory tissue or diffuse abscesses (Figure 3d).

DISCUSSION

One of the most frequently used modalities in assessing canine pelvic and abdominal cavity is ultrasonography (Gaschen, 2009).

The most consistent clinical signs were tabulated in Table 1; these clinical signs were described in previous reports (Senior, 2005; England, 2005, and Maddison and Syme, 2010).

Renal affections comprise 25% of the recorded cases. Ultrasonographically, cysts appear as smooth, round, focal anechoic structures with sharply (defined) margnated walls (Grooters et al., 1997; Nyland and Matton, 2014; Kitshoff...
et al., 2011), with distal acoustic enhancement (Biller et al., 1996). Sonographically, Hydronephrosis detected as a dilatation of the renal pelvis by an anechoic region (Konde, 1985; Walter et al., 1987; Şahal et al., 2005). The kidney is usually enlarged; with different degrees of pelvic distention. The distention is proportional to the severity of the hydronephrosis (Espada et al., 2006).

Figure 3: Ultrasonographic findings in prostatic affections

- **a:** Sagittal sonogram of 6-years old boxer dog with history of constipation and dyschezia showing diffuse enlargement in prostate (P) gland measuring (3.5 x 3.3 cm). The gland retains its shape, echotexture unchanged, but the echogenicity more prominent. Diagnosis: Benign prostatic hyperplasia;
- **b:** Sagittal sonogram of 11-years old Labrador Retriever dog with history of constipation and dyschezia showing presence of intra-prostatic cyst (c) measuring (1.6 x 2.7 cm) and containing clear anechoic fluid. Diagnosis: Prostatic cyst;
- **c:** Sagittal sonogram of 9-years old Griffon dog with history of constipation and dyschezia showing enlarged and hyperechoic prostate (P) than normal measuring (2.5 x 3.3) and presence of intra-prostatic cyst (c) measuring (1.2 x 0.73 cm) and containing clear anechoic fluid. Diagnosis: Prostatic cyst;
- **d:** Sagittal sonogram of 8-year-old Rottweiler dog with history of dysuria, stranguria, pyuria, and a discharge from the penis showing presence of focal areas of anechoic or hypoechoic areas (arrows) representing inflammatory tissue or diffuse abscesses in prostate (P). Diagnosis: Prostatitis.

In the present study, urinary bladder affections constituted the largest portion of diagnosed cases. Cystitis is one of the most frequent diseases affecting bladder, whereas acute cystitis causes no ultrasound abnormalities, but long-standing and severe cystitis often leads to diffuse bladder wall thickening with a hyperechoic wall and irregular mucosal surface (McLean and Edell, 1978; Johnston et al., 1986; Takiguchi and Inaba, 2005; Im et al., 2009). A Hyperechoic focus with shadowing in the dependent portion of the bladder was indicative to Cystolithiasis (Cartee et al., 1980; Biller et al., 1990a; Pervez and Arif, 2007; Romans, 2013). Solitary or multiple uroliths produce intense acoustic shadowing (Leveille, 1998). Ultrasonographic examination revealed the presence of large masses with a variable echotexture extends into lumen of the bladder in 4 cases, which were identified as bladder neoplasm (Knapp et al., 2000; Naughton et al., 2012). Bladder hemorrhage was found ultrasonographically as large, organized clots with hyperechoic lacelike appearance. The bladder hemorrhage may arouse secondary to trauma, cystitis, calculi or neoplasm (Dennis et al., 2010).

Six cases of prostatic affections were diagnosed include bengin prostatic hyperplasia, prostatic cyst and prostatitis. Benign prostatic hyperplasia diagnosed ultrasonically as diffuse increase in prostatic size (Paclikova et al., 2006; Kiber et al., 2012). Canine paraprostatic cysts have been defined ultrasonographically as large ovoid structures with anechoic contents and smooth internal margins (Stowater and Lamb, 1989). Increase in prostatic size with a heterogeneous texture parenchyma and presence of several hyperechoic and hypoechoic areas occur in case of prostatitis (Boucif et al., 2015). Clinical signs accompanied with these disorders repeatedly overlap; consequently, it is essential to reach a final diagnosis before commencing treatment (Smith, 2008). In the present study, ultrasonography was superior to clinical examination in diagnosis of prostatic disorders.

CONCLUSION

Clinical examination of dogs with urinary and/or prostatitis affections cannot pinpoint the exact problem;
therefore, ultrasonography is compulsory for this specification to reach the most reliable diagnosis.

Ultrasonography doesn’t only detect superficial lesions due to sectioning of organs and hence detect deep seated lesions which not accessible by routine examinations.

CONFLICT OF INTEREST

There exist no conflict of interest.

AUTHOR’S CONTRIBUTION

Both authors of this manuscript contributed equally.

ACKNOWLEDGMENT

None

REFERENCES

• Jakovljevic S, Rivers WJ, Chun R, King VL, Han CM (1999). Results of renal ultrasonography performed before, during and after administration of saline (0.9 NaCl) solution to induce diuresis in dogs without evidence of renal disease.

