Case Report

Clinical Investigation of Peste des Petits Ruminants Outbreak in Sheep and Goats at Islamabad, Pakistan

Riasat Wasee Ullah*, Asma Latif†, Aamer Bin Zahur‡, Hamid Irshad§, Muhammad Humayoon Samo¶, Shahid Ali Khan∥, Khawar Mahboob∥∥, Shahida Afzal∥∥∥

1Animal Health Research Laboratories, Animal Sciences Institute, National Agricultural Research Centre Islamabad; 2 Progressive control of PPR in Pakistan, FAO Islamabad, Pakistan (GCP/PAK/127/USA); 3Veterinary Research Institute Lahore

*Corresponding author: riasatwasee2520@yahoo.com

ARTICLE HISTORY

Received: 2014–05–01
Revised: 2014–07–22
Accepted: 2014–08–01

Key Words: Peste des Petits Ruminants, Clinical findings, Small ruminants, PPR outbreak

ABSTRACT

Clinical and laboratory investigations were carried out during an outbreak of Peste des Petits Ruminants (PPR) in sheep and goats in Islamabad Capital Territory (ICT), Pakistan. The overall morbidity in goats (27.95%) was higher as compared to sheep (10%). Goats experienced severe clinical disease while mild form of disease was observed in sheep. Eleven swab samples (ocular/nasal) from live animals and eight tissue samples (lung, liver, spleen, lymph nodes) from dead animals were collected and analyzed by RT–PCR in the laboratory. All tissue samples while 5 of 11 swab samples were positive for PPR. History of the flock revealed that mix grazing and introduction of new animals might be important factors in introduction of disease in the flock.

Clinical and postmortem examination of the affected sheep and goat flocks were conducted. The affected animals were dehydrated and exhibited high fever (105–107°F), severe conjunctivitis, congestion of third eye lids, ocular and nasal discharges (Figure 1) and severe diarrhoea. The carcasses of the dead animals were dehydrated with sunken eyes. The cardiac lobes of the lungs of dead animals were congested. Haemorrhages were observed on liver, abomasal mucosa (Figure 2) and large intestinal mucosa. Mesenteric lymph nodes were inflamed (Figure 3). In sheep flock the clinical sign were mild compared to goat flock. The dead carcasses were properly disposed off to stop the further transmission of PPR virus.

After detailed clinical and postmortem examination appropriate samples were collected from live and dead animals which included nasal/ocular swabs and 8 tissues

Ullah et al (2014). An Outbreak of PPR in ICT area Pakistan

ISSN 2308–2798
samples (lung, liver, spleen, lymph node) for laboratory confirmation. Samples were shipped in cold condition to Animal Health Research Laboratories (AHRL), Animal Sciences Institute, National Agricultural Research Centre, Islamabad Pakistan. The samples were analysed for PPR viral antigen using RT–PCR following Couacy–Hymann et al. (2002). All tissue samples and 5 of 11 swab samples were found positive by RT–PCR (Figure 4).

The morbidity and mortality rates were higher in goat flock compared to sheep flock. These findings are in complete concurrence with Diallo (2006) who reported that morbidity and mortality rates due to PPR may vary from 0 to 90% depending on the local husbandry practices, breed, age and other factors. Similar findings are also documented by Abu–Elzein et al. (1990). On the basis of clinical picture PPR can be easily diagnosed (Tariq et al., 2014). In present study PPR was also confirmed on the basis of clinical sings. It was also observed in this study that animals in particular age groups (10–18 months) in the flock were relatively more affected with PPR virus infection compared to other age groups. In contrast to our study other studies reported that animals of all ages are equally susceptible to PPR virus infection (Abubakar et al., 2011; Lefevre and Diallo, 1990; Zahur et al., 2009). In this study it was observed that sheep experienced mild form of PPR. A study conducted in Ethiopia reported the similar findings. The sheep were found to be relatively resistant to PPR virus infection during an outbreak within a mixed flock, where only goat showed clinical disease (Roeder et al., 1994). However, other authors reported that sheep and goats were affected with equally overwhelming consequences with high morbidity and mortality (Shaila et al., 1989; Taylor et al., 2002). There may exist a host adaptation which plays an important role in the appearance of clinical signs.

In conclusion introduction of new animals in to the flock proved to be an important factor in the persistence and transmission of PPR virus. It was also revealed that implementation of proper zoosanitary and biosecurity measures along with quality vaccination can break the transmission cycle of PPR virus.

ACKNOWLEDGEMENT
Authors are thankful to FAO–UN project on Progressive Control of PPR in Pakistan (GCP/PAK/127/USA) for outbreak information and logistic support for outbreak investigations.

REFERENCES


