Research Article

Prevalence of *Haemoproteus* Sp in Domestic Pigeon at Chittagong and Khulna District in Bangladesh

Muhammad Shafiqul Islam1*, Muhammad Abdul Alim1, Shubhagata Das1, Kazal Krishna Ghosh2, Shahnaz Pervin1, Afroza Lipi1, AMAM Zonaed Siddiki1, Muhammad Masuduzzaman1, Muhammad Alamgir Hossain1

1Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225; 2 Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong – 4225

*Corresponding author: si.mamun@ymail.com

ARTICLE HISTORY

Received: 2014–02–04
Revised: 2014–04–14
Accepted: 2014–04–23

ABSTRACT

A study was carried out to determine the prevalence of *Haemoproteus* sp in domestic pigeon at Chittagong and Khulna district in Bangladesh. A total of 213 blood samples were collected from six different locations in Chittagong (Foy’s lake, Bibirhat, Zhaotola) and Khulna district (Banorgati, Sheikhpara, Goborchaka). Blood smears were stained with giemsa and examined under microscope using immersion oil. Mature and immature stages of *Haemoproteus* gametocytes were found in 43.63% and 58.25% in Chittagong and Khulna respectively. The prevalence was almost similar in the areas of Khulna district (53.55 – 62.86%), whereas, a fluctuation observed in Chittagong district from 33.33 to 59.52%. Finally, we recommended further extensive studies by molecular characterization which will help to make a parasitic lineage.

INTRODUCTION

Pigeons are used as pets, cultural and religious symbols. They also have value as a source of food, hobby and experimental purposes (Sari et al., 2008). Pigeons are affected with several health problems, whereas parasite infections play a major role. Parasitic infection can lead to retarded growth, low egg production and susceptibility to other infections in birds (Dranzoa, 1999). However, parasitic protozoa *Haemoproteus* sp are widely distributed in tropical and subtropical regions (Adriano and Cordeiro, 2001). In a taxonomic review of the haemoproteids parasites of columbids, only *H. columbae* and *H. sacharoyi* are valid species (Bennett and Peirce, 1990). Among which *H. columbae* infects most commonly in pigeon and doves and are transmitted by blood-sucking louse fly *Pseudolynchia canariensis*, which is a proven vector of *H. columbae* (Bennett et al., 1993). Based on the morphological features of the blood stages over 140 species of avian *Haemoproteus* have been described (Bishop and Bennett, 1992). Some of which are responsible for severe pathology in birds and in pigeons only cause’s disease in stressed condition (Zinkl, 1986). Many recent studies have been recorded on avian blood parasites in different areas of the world (Bensch et al., 2000; Ricklefs et al., 2005). Based on microscopic examination the prevalence of *Haemoproteus* sp was recorded 20% in Mymensingh district in Bangladesh (Dey et al., 2010). However, there is no study regarding *Haemoproteus* sp infection in Chittagong and Khulna region, that’s why, the present study was performed to detect the *Haemoproteus* sp and address the pigeon farmers about its amplitude.

Materials and Methods

Study Area

The study was carried out from April 2012 to may 2013 involving randomly selected 110 and 103 domestic pigeons (*Columbia livia*) from different location at Chittagong (Bibirhat, Foy’s lake and Zhaotola) and Khulna (Sheikhpara, Shib bari and Gobor chaka) respectively.

<table>
<thead>
<tr>
<th>Area</th>
<th>Location of farms</th>
<th>No. of pigeon</th>
<th>Hemoproteus (+ve) (No. of pigeon)</th>
<th>Percentage Positive</th>
<th>Overall % positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chittagong</td>
<td>Sholoshohor</td>
<td>35</td>
<td>12</td>
<td>34.26</td>
<td>46.60</td>
</tr>
<tr>
<td>Metropolitan area</td>
<td>Foy’s lake</td>
<td>42</td>
<td>25</td>
<td>59.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zhaotola</td>
<td>33</td>
<td>11</td>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>Khulna city</td>
<td>Sheikhpara</td>
<td>32</td>
<td>18</td>
<td>56.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shib bari</td>
<td>35</td>
<td>22</td>
<td>62.86</td>
<td>58.25</td>
</tr>
<tr>
<td></td>
<td>Gobor chaka</td>
<td>36</td>
<td>20</td>
<td>55.55</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Overall percentage of *Haemoproteus columbae* in Chittagong and Khulna city

Islam et al (2014). *Haemoproteus* *Sp* in Pigeon

ISSN: 2311–4096
Sample Collection and Examination
Blood samples for the preparation of blood smears were obtained from a brachial vein and the pigeon then tagged and released. The air–dried blood smears were subsequently fixed in absolute methanol 3–5 minutes and later stained with Giemsa’s with phosphate buffer (pH 7.4) in the ratio of 1:7 for 30 minutes. All dried smears were examined under light microscopy for the detection of blood protozoa and identified according to Soulsby (1982).

RESULTS AND DISCUSSIONS
All samples were microscopically examined and gametocytes of Haemoproteus sp were seen within red blood cells. Diagnostic characters included the elongated, crescent–shaped forms of the gametocyte, its nucleus size and position in the cell (Picture 1–A). Mature macrogametocytes were circumnuclear and lightly staining blue with Giemsa; refractile granules were found in various sizes, generally moderately large and ovoid, occasionally smaller (Picture 1–C). Whereas, microgametocyte stained pale pink including pigments granule occupied in polar position (Picture 1–B). The characters of macro and micro gametocytes of the present study were in line with Youssefi and Rahimi (2011). Furthermore, Musli et al. (1999) found H. columbae gamets (immature and mature gametocytes) in blood samples of 75% pigeons through microscopic examination.

In the current study, out of 110 and 103 samples, 48 (46.60%) and 60 (58.25%) were found positive in Chittagong and Khulna district respectively (Table 1). In contrary, studies regarding Haemoproteus infection conducted at Mymensingh district in Bangladesh (Dey et al., 2010), Bursa region (Senlik, 2005) and Madagascar (Raharimanga et al., 2002) revealed prevalence rate ranges from 19–21%. However, the present study was corresponding with Dranzoa et al. (1999); Orajaka and Nweze (1991) who reported that 76.5% and 37.5% pigeons are positive for Haemoproteus columbae respectively in Uganda and Nigeria. Infection load was highest in Khulna City (55.55–62.86%) in comparison with Chittagong district and the infection was lowered in two areas of Chittagong district (Zhaotola 33.33% and Sholoshohor 34.26%) in Columba livia. These differences might be due to climatic condition, population density and husbandry practices of pigeon.

In the present study, samples from healthy pigeons exhibited the high infection load of Haemoproteus sp. This high prevalence could be attributed to the presence of blood sucking vector flies Pseudolynchia canariensis (Bennett et al., 1993). Dey et al., (2010) found utmost association of Pseudolynchia canariensis (90%) with the developmental stage of Haemoproteus spp in Mymensing, Bangladesh.

CONCLUSION
In conclusion, our study indicated that more studies are required owing to different prevalence rates in different parts of Bangladesh. Haemoproteus sp should therefore be considered a economic threat for pigeon farmers’ although there is no published data available in our country.
REFERENCES

