Research Article

Prevalence and Haemato–biochemical Studies on Naturally Occurring Gout in Chhattisgarh

Nitin Singh*, Ratan Chandra Ghosh, Amit Singh

Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Anjora, Durg Indira Gandhi Krishi Vidyalaya, Raipur, Chattisgarh, India
*Corresponding author: drnitinsinghvet@gmail.com

ARTICLE HISTORY
Received: 2013–12–09
Revised: 2013–12–16
Accepted: 2013–12–17

ABSTRACT
The present investigation was undertaken to study the prevalence of visceral gout and haemato–biochemical alterations in the gout affected broilers. The overall prevalence of visceral gout from different farms was found to be 21.47%. Out of total cases of visceral gout recorded (332 birds), 74.09% were found during winter season i.e. from November to February as compared to summer (21.38 %) i.e. from March to June, followed by monsoon season (4.31%) i.e. from July to October. Of the susceptible age (first three weeks), the highest autopsy incidences (62.34%) was recorded during the second week of age, followed by 24.09% in third week and 12.65% in first week of age, while incidence of 0.9% was observed in birds of more than three weeks of age. Haematological results showed increase in total erythrocyte count (TEC), total leukocyte count (TLC) and haemoglobin (Hb) concentration. There was significant (P<0.05) increase in the level of uric acid in gout positive birds. Significant (P<0.05) increase in serum amino transferase, alkaline phosphatas and albumin were also found in natural case of gout positive birds.

Key Words: Birds, Haematological and biochemical changes, Gout, Poultry

INTRODUCTION
Gout is a metabolic disorder that results in hyperuricemia and deposition of monosodium urate crystals in various parts of the body. The gout is characterized by retention and build–up of urates in tissues. It usually occurs in two separate syndromes: visceral gout and articular gout. Phalen et al; (1990) defined visceral gout as the accumulation of uric acid tophi on serosal surfaces of the pericardium, liver capsule, air sacs, and within the kidney but may be found in any tissue. These crystals stimulate phagocytosis by neutrophils and initiate the inflammatory cascade. Outbreaks are seen in young chicks in the first week of life (baby chick nephropathy) or in flocks suffering kidney damage, or reduced water intake. The kidney damage can arise from infection with certain strains of infectious bronchitis virus, exposure to some mycotoxins or inadequate water intake. The study was considered with the objective to study the seasonal prevalence of gout and to further evaluate the pathogenesis by studying Haemato–biochemical findings.

Methodology
The prevalence of gout was studied on the basis of live and dead birds collected from different poultry farms of different age groups in Durg district, Chattisgarh, India with respect to different seasons in broilers for a period of 12 months. Feed samples were collected from gout affected farms and analyzed for its crude protein content. Nitrogen present in the samples of feed was estimated by Micro–kjeldahl's method of AOAC (1995).

Assay of Hematological Parameters
The blood samples were collected from jugular vein/ heart using EDTA as an anticoagulant @ 1mg/ml of blood. The parameters like i) Total erythrocyte Count (TEC) (million/µl), (ii) Total leukocyte Count (TLC) (thousand/µl), (iii) Packed cell volume (PCV) (percent), (iv) Haemoglobin (Hb) (gram percent), (v) Differential leukocyte count (DLC) (percent) were estimated. TEC and TLC were done as per the method of Nambiar (1960) using diluting fluid recommended by Natt and Herick (1954). Hb was estimated by Acid haematin method using Sahl's instrument. PCV and DLC were determined as per the method described by Jain (1986).

Assay of Biochemical Parameters
For biochemical parameters serum was collected as per standard procedure and biochemical parameters were carried out by using a semi autoanalyser using standard kit (Bayer Diagnostic India Ltd). The parameters includes (i) Total serum protein (g/dl) (ii) Serum albumin (g/dl) (iii) Serum globulin (g/dl), (iv) Serum alkaline phosphatase (ALP) (U/L) (v) Serum alanine amino transferase (ALT) (U/L) (vi) Serum aspartate amino transferase (AST) (U/L) (vii) Serum uric acid (mg/dl) (viii) Serum creatinine (mg/dl).

RESULTS AND DISCUSSION
Clinically the affected birds revealed the prevalence of visceral gout which was found to be highly influenced by atmospheric temperature. A total of 332 suspected cases of gout were collected for duration of 12 months. The study revealed that 74.09% of the total (332 birds) suspected cases of visceral gout were recorded during colder months i.e. from November to February as compared to hotter months (21.38%) i.e. from March to June, followed by monsoon (4.31%) i.e. from July to October during the year. In the present study, it was observed that the prevalence of visceral gout was highest in the month of...
January (43.64%), followed by the month of December (38.60%) and May (23.52%), whereas the lowest prevalence was observed in the month of August (3.26%). Age wise susceptibility due to visceral gout among broiler chicks was found to be maximum below three weeks of age. Age wise prevalence was recorded to be higher (62.34%) in birds below 2 weeks of age (Out of 332 positive case) followed by (24.09%) in birds between 2 to 3 weeks of age and (12.65%) was recorded in birds below 1 week of age. Only 0.90% of gout was observed in birds above 3 weeks of age (figure-1). Similarly, Shrivastava (2001) and Karasawa et al. (1991) also reported higher mortality (68.28%) due to visceral gout during colder months of December to March. There is also excess formation and decreased dissolution of uric acid at colder temperature (Sayed, 2001). High protein diet is one of the major etiological agents in the production of gout and in the present survey the highest amount of crude protein found was 26% whereas the lowest amount was 12.25% and the average amount being 20.59%. Thus it showed that higher protein level in the diet is not only the major etiological agent in production of gout but it result in with combination of other factors like infectious bronchitis virus, diets containing higher amount of protein, cryptosporidiosis, Vitamin A deficiency, water deprivation (Schmidt, R. E. et al, 2003, Trampel et al, 2000, Hocking and Bernard, 1997).

Haematological Parameters

Significantly (P<0.05) higher levels of TEC (4.12±1.38 million/µl), TLC (34.27±2.28 thousand/µl), Hb (12.8±2.46%) and PCV (38.23±3.06%) were observed in suspected gout affected birds as compared to normal birds in which TEC, TLC, Hb and PCV was found to be (3.25±1.58 million/µl) (26.35±2.34 thousand/µl) (8.8±1.08%) (29.36±0.97%), respectively, whereas the results of DLC showed significantly (P<0.05) higher lymphocyte (61.86±2.71%) count in suspected gout affected birds as compared to normal birds (56.23±3.46%). There was no significant (P>0.05) difference observed in heterophils, eosinophils, monocytes and basophils counts. Our findings were in agreement with Christopher (1977), who also observed increase in the lymphocyte counts in birds with gout. Koutsos et al. (2001) found no significant differences in any of the hematological parameters, whereas Rahamatulla and Mohiyuddeen (1973) found only increase in number of monocytes.

Higher values of TEC, TLC, Hb and PCV in gout affected birds may be due to adverse climatic conditions. The birds huddle together or scatter due to low and high temperature respectively leading to low water intake. This results in progressive dehydration and simultaneously haemo-concentration (Schmidt, R. E. et al, 2003; Julian, R. 1982). Higher lymphocyte count might be due to metabolic acidosis leading to uremia, which may have stimulatory effect on bone marrow leading to leukocytosis.

Biochemical Parameters

Significantly (P<0.05) higher level of uric acid was observed in birds suspected to be positive for gout (86.13±12.10 mg/dl) as compared to the level of uric acid in normal birds (5.33±0.274 mg/dl). No significant alterations were observed in the level of creatinine in the suspected gout affected birds. There was significant (P<0.05) differences observed in the activity of AST (374.83±0.62 U/L) ALT (16.71±0.42 U/L) and ALP (3966.6±147 U/L) in serum sample of birds suspected to be gout affected as compare to AST (232.56±115 U/L), ALT

Table 1: Biochemical observations (natural case) of gout positive broiler birds

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uric acid (mg/dl)</td>
<td>86.13±12.10 ^**</td>
</tr>
<tr>
<td>2</td>
<td>Creatinine (mg/dl)</td>
<td>0.446±0.017 ^**</td>
</tr>
<tr>
<td>3</td>
<td>AST (U/L)</td>
<td>374.83±0.62 ^**</td>
</tr>
<tr>
<td>4</td>
<td>ALT (U/L)</td>
<td>16.71±0.42 ^**</td>
</tr>
<tr>
<td>5</td>
<td>ALP (U/L)</td>
<td>3966.6±147 ^**</td>
</tr>
<tr>
<td>6</td>
<td>TSP (g/dl)</td>
<td>3.27±0.055 ^**</td>
</tr>
<tr>
<td>7</td>
<td>ALB (g/dl)</td>
<td>1.90±0.061 ^**</td>
</tr>
<tr>
<td>8</td>
<td>GLB (g/dl)</td>
<td>1.38±0.078 ^**</td>
</tr>
</tbody>
</table>

Superscript may read column wise for comparison of means. Similar superscript showing means do not differ significantly (P>0.05), (**P<0.01).
(8.83±0.30 U/L) and ALP (766.8±7.0 U/L) of normal birds (table 1). The activity of AST is high in acute and chronic liver injury (Tennant, 1997). Alanine amino transferase (ALT) is employed as a marker of hepatocellular damage and in general ALT is considered a more sensitive indicator of liver cell injury than AST (Oser, 1976). Increase level of AST and ALT in the blood indicates cellular damage (Ramazzotto and Carlin, 1978). Elevated plasma alkaline phosphatase might be due to acute hepatocellular damage (Zimmerman and Henby, 1969) and enhance activity indicates renal damage.

There was no significant difference (P>0.05) alteration observed in the level of total serum protein, however serum albumin level was found to be significantly (P<0.05) higher (1.90±0.061 g/dl) in suspected gout affected birds as compared to normal birds (1.38±0.078 g/dl). The activity of AST, ALT and ALP in serum sample of birds suspected to be gout affected as compared to normal birds were significantly (P≤0.05) increased only because of dehydration and emaciation of the body. The study showed that highest suspected cases of visceral deposition of monosodium urate crystals in various parts of the body. The elevated levels of TEC, PCV and Hb, which were found in the natural cases of gout, are in accordance with our findings of albuminemia. Globulin part of protein was found to be increased only because of dehydration and emaciation of the birds. Immunoglobulin production might have been enhanced, as lymphocytosis occurrences are common in the natural cases of gout.

CONCLUSIONS
Gout is a metabolic disorder that results in hyperuricemia and deposition of monosodium urate crystals in various parts of the body. The study showed that highest suspected cases of visceral gout were recorded during colder months. Age wise prevalence in broiler chicks was recorded to be higher in birds below 2 weeks of age. The results also concluded that significant higher levels of TEC, TB, HB and PCV were observed in suspected gout affected birds as compared to normal birds. The uric acid estimation show significant higher in birds suspected to be positive for gout. There was significant (P<0.05) differences in the activity of AST, ALT and ALP in serum sample of birds suspected to be gout affected as compared to normal birds, while no significant difference in creatinine level is found in affected birds.

REFERENCES