Status of Trace Mineral Deficiency in Sheep and Goat in Kashmir Valley

Mohd. Iqbal Yatoo1, Archana Saxena2, Ricky Jhambh1, Showkat Ul Nabi3, Deepa Padinjare Melepadi, Pankaj Kumar4, Umesh Dimri1, Mahesh Chander Sharma4

1Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Barielly, U.P.–243122; 2CSIR–CIMAP, Lucknow, UP– 226015; 3ICAR–RCER, Patna, Bihar– 800014; 4Indian Council of Agriculture Research, HQ New Delhi–110014
*Corresponding author: iqbalyatoo@gmail.com

INTRODUCTION
Small ruminant production represents the principal economic output, contributing a large share of the income of farmers in many parts of Asia and Africa (Ben Salem and Smith, 2008). Trace mineral deficiency affect production and performance of sheep and goat (Xin et al., 2011; Lengarite et al., 2012). Mineral deficiencies are common in sheep and goat grazing poor quality pastures and reared under traditional system (Sowande et al., 2008; Kawas et al., 2010; Xin et al., 2011). Trace mineral deficiency is not recognized easily, especially in small ruminants as deficiency exists in flocks in subclinical form and deficiency is not recognized easily (Marchevsky, 1974). Trace mineral deficiency also causes ill thrift, abortion, placental retention, death of lambs, reduction in immunity, increased susceptibility to bacterial and parasitic infections (Suttle, 2010).

In India trace mineral status of different states has been studied (Gupta et al., 2008; Singh, 2009) and status of deficiency has been evaluated (Sharma et al., 2003; Sharma et al. 2006). Such study is lacking in Kashmir valley where small ruminants form an important part of rural economy. Hence the present study was carried out to study the prevalence of trace mineral deficiency in sheep and goat and accordingly devise the strategies to prevent the occurrence of deficiency.

MATERIALS AND METHODS
A total of 33 cross breed sheep and 35 cross breed goats were randomly selected for the survey purpose from three districts (Budgam, Pulwama and Srinagar) of Kashmir valley. All the selected animals were females in the age group of 1–3 year, grazing in same pastures and reared under similar managerial conditions.

RESULTS

Blood samples were collected by jugular vein puncture, 3ml in tubes without any anti-coagulant for harvesting serum. The separated serum samples were stored at −20°C for pending analysis of minerals.

Copper, iron, zinc and cobalt were estimated by atomic absorption spectrophotometry after digesting the serum samples by the procedure of Kolmer et al. (1951). AAS (Model No. AAS 4141) manufactured by Electronic Corporation of India (ECIL), Hyderabad was used in present investigation. Data collected from this study were analyzed as per the method described by Snedecor and Cochran (1994) for mean and standard error. Prevalence is calculated by dividing no. of deficient animals with the total no. of animals in an area and expressed in percentage (Marchevsky, 1974).

Table 1: Showing number of blood samples collected from three districts of Kashmir valley.

<table>
<thead>
<tr>
<th>Districts</th>
<th>Blood Block</th>
<th>Sheep</th>
<th>Goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgam</td>
<td>Chadoora</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Chari–sharief</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kansahab</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pulwama</td>
<td>Pulwama</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pampore</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kaka Pora</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Srinagar</td>
<td>West–zone</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>South–zone</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Central zone</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 53 35

Table 2: showing number of blood samples collected from three districts of Kashmir valley.
The average prevalence of copper deficiency in sheep and goat of the Kashmir valley was observed to be 43.39% and 45.71%, respectively. Highest prevalence of copper deficiency in sheep was observed in Central zone of Srinagar (66.60%) and lowest in Khan–Sahab and Kaka–Pora (33.33% each). Highest prevalence of copper deficiency in goats was observed in Chrarisharief and Kaka–Pora (66.66% each) and lowest in West zone of Srinagar (33.33%). Overall prevalence of iron deficiency in sheep and goat of the Kashmir valley was observed to be 18.86% and 20.00%, respectively. Highest prevalence of iron deficiency in sheep was observed in Central zone of Srinagar and Pampore (33.33% each) and lowest in Chrarisharief (12.50%). Highest prevalence of iron deficiency in goats was observed in Central zone of Srinagar (50.00%) and lowest in Pulwama (40.00%) and lowest in Chadoora (18.18%).

Table 2: Prevalence of trace mineral deficiency (%) in Sheep and Goat in various districts of Kashmir valley

<table>
<thead>
<tr>
<th>Districts</th>
<th>Block</th>
<th>Copper</th>
<th>Iron</th>
<th>Zinc</th>
<th>Sheep</th>
<th>Goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgam</td>
<td>Chadoora</td>
<td>4/10(40)</td>
<td>4/11(36.6)</td>
<td>2/10(20)</td>
<td>2/11(18.18)</td>
<td>1/2(50)</td>
</tr>
<tr>
<td></td>
<td>Chrarisharief</td>
<td>3/8 (37.5)</td>
<td>2/3 (66.6)</td>
<td>1/8 (12.5)</td>
<td>1/3 (33.3)</td>
<td>1/8 (37.5)</td>
</tr>
<tr>
<td></td>
<td>Khan Sahab</td>
<td>1/3 (33.3)</td>
<td>1/2 (50)</td>
<td>0/3 (Nill)</td>
<td>0/2 (Nill)</td>
<td>1/3 (33.3)</td>
</tr>
<tr>
<td></td>
<td>Pulwama</td>
<td>4/10 (40)</td>
<td>2/5 (40)</td>
<td>2/5 (20)</td>
<td>1/5 (20)</td>
<td>2/10 (20)</td>
</tr>
<tr>
<td></td>
<td>Pampore</td>
<td>4/9 (44.4)</td>
<td>1/2 (50)</td>
<td>0/3 (Nill)</td>
<td>0/2 (Nill)</td>
<td>3/9 (33.3)</td>
</tr>
<tr>
<td></td>
<td>Kaka Pora</td>
<td>1/3 (33.3)</td>
<td>2/3 (66.6)</td>
<td>0/3 (Nill)</td>
<td>1/3 (33.3)</td>
<td>2/3 (66.6)</td>
</tr>
<tr>
<td>Srinagar</td>
<td>South–zone</td>
<td>3/5 (60)</td>
<td>2/4 (50)</td>
<td>1/5 (20)</td>
<td>1/4 (25)</td>
<td>4/5 (80)</td>
</tr>
<tr>
<td></td>
<td>Central zone</td>
<td>2/3 (66.6)</td>
<td>1/2 (50)</td>
<td>0/3 (Nill)</td>
<td>1/3 (33.3)</td>
<td>1/2 (50)</td>
</tr>
<tr>
<td>Mean</td>
<td>23/33(69.39)</td>
<td>16/35(45.71)</td>
<td>10/53(18.86)</td>
<td>7/35(20)</td>
<td>18/53(33.93)</td>
<td>14/35(40.00)</td>
</tr>
</tbody>
</table>

Values in the parenthesis indicate prevalence (%).

DISCUSSION

Higher prevalence of copper deficiency followed by zinc, cobalt and iron deficiency in sheep and goat. Present study can be contributed to the higher deficiency of copper, zinc and cobalt in the soil and fodder of this region (Yatoo et al., 2011). Booshan et al. (2010) have reported copper deficiency in goats. Copper deficiency causes many ill effects like loss of wool quality, loss of weight, diarrhoea and death in young ones (Radostits et al., 2007; Khan et al., 2007). Humann–Ziehank et al. (2008) have reported zinc deficiency in sheep. Yatoo et al. (2013) have also reported higher deficiency of zinc followed by copper and cobalt in goats. Zinc is essential for normal health, metabolism and immunity (Pavlata et al., 2011).

In our study cobalt deficiency was lower in goats than in sheep. Goats’ presumably have similar requirements of cobalt as sheep (Smith and Sherman, 2009) but are less sensitive to cobalt deficiency than sheep (Clark et al., 1987). Lower prevalence of iron deficiency in sheep and goat may be due to the adequate content of iron in forages (Yatoo et al., 2011). Higher deficiency of trace minerals in sheep and goat in urban areas may be related to availability of less and poor quality fodders than the rural areas.

The present state of trace mineral deficiency in sheep and goat in Kashmir valley may be attributed to the lack of knowledge regarding scientific feeding in general and unawareness about the implications of trace mineral deficiency in particular. Lengarie et al. (2012) have also reported mineral deficiency in grazing sheep and goat in arid range lands.

Based on the present findings it can be concluded that the sheep and goat in Kashmir valley are predisposed to trace mineral deficiency under the present feeding systems. Hence mineral supplementation in the form of mineral mixture or mineral drenching of these animals is imperative.

Author’s Contribution

MIY implemented the study design. MCS, UD and PK provided the necessary guidance and drafted manuscript. AS, RJ, SUN and DPM helped in sample processing. All authors read and approved the final manuscript.

ACKNOWLEDGEMENT

Authors are thankful to Director, IVRI for supporting this research work. Thanks are also due to the staff of Clinical Medicine Laboratory, IVRI for providing much needed help.

Competing interests

Authors declare that they have no competing interests.

REFERENCES

Yatoo et al. (2013). Status of Trace Mineral Deficiency in Sheep and Goat in Kashmir Valley

ISSN 2308–2798

