INTRODUCTION

Bali cattle is one of the cattle played an important role in livestock development in Indonesia. Currently, breeding programs in conserving and improving the genetic potential of bali cattle are based on performance and pedigree information without any knowledge of the number of gen that effect the perpormance.

Recent advances in molecular technologies provide various approaches for DNA polymorphism studies (Teneva et al., 2014). Molecular genetic technologies offer to possibility to known of gen involved in the expression of a quantitative trait by combining information on DNA markers and phenotypic information on a trait. Microsatellites are the most popular genetic marker and useful markers, due to distributed randomly in genome, codominance, abundance, and high level of polymorphism. By analyzing the association of polymorphism of microsatellite between reproductive traits, these marker can applied to marker-assisted selection (MAS). Among specific genes that may influence the economic traits in cattle such ILSTS026, BMS1987, BMS2646, INRA072, and BMS1248 loci that involved in reproduction traits were asses by polymerase chain reaction in bali cattle. Blood samples were obtained from 42 bali cattle. The result described that all markers were amplified successfully in bali cattle microsatellite loci. For the five microsatellites loci analyzed were detected to be polymorphic. The number of 29 alleles were found in all samples, with the variation of alleles varied from 3 to 8. The fragment size was 105 bp to 300 bp. The PIC varied between 0.5025 to 0.859. For this marker, the Expected and Observed heterozygosity in this study diverse between 0.5981 (locus BMS2646) to 0.9048 (BMS1987 and INRA072) and 0.5981 (BMS2646 to 0.8943 (BM1248), respectively. The microsatellite loci INRA072 had a positive association with gestation period while BM2646 had a positive association with calving interval. These data provide evidence that bali cattle breed have good genetic variability, which prospects for future selecting programs, especially marker assistant selection.

MATERIALS AND METHODS

Blood samples was collected from 42 cows from UD Sari Laba Bali cattle Farm, Bangli, Bali. The cows were unrelat-
ed and selected randomly. All cows were kept under identical and standard conditions. DNA was isolated using DNAzol method (Invitrogen, Carlsbad, CA) according to the manufacturer's recommendations from peripheral blood lymphocytes. Samples were amplified by Polymerase Chain Reaction (PCR). The description of the primer uses in this study are given in Table 1. The PCR reaction was continued the following component: 100 ng DNA template, 20 μM of each primer, 200 μM each dNTP, 1U Taq DNA polymerase. The final volume was 25 μl. The amplified PCR products were separated by electrophoresis onto non-denaturing polyacrylamide gel (8%) containing acrylamide and bis-acrylamide. The gel were stained with 0.1% silver nitrate and visualized then photographs under a white light gel documentation.

**STATISTICAL ANALYSIS**
All the alleles of microsatellite and genotypic frequencies were identified directly from the gel. The Allele frequencies for microsatellite loci were calculated for the entire sample. polymorphism information content (PIC), the allele frequencies, Observed heterozygosity (HO) and expected heterozygosity (HE) were calculated using software MICRO-SATELLITE TOOLKIT V. 3.1 (http://animalgenomics.ucd.ie/sdepark/ms-toolkit/). The polymorphism information content was estimated using following equation formula (Botstein et al., 1980). The data on calving interval and gestation period of different genotypes were analyzed by LSD.

**RESULT AND DISCUSSION**
All of five loci in bali cattle were successfully amplified. Genotypic and allelic frequencies estimated for the five microsatellite loci in are presented in Table 2. 28 alleles were detected in this study with an average of 5.80 alleles, and the observed number of alleles in each locus ranged from three to eight. In this present study, showed that all loci in bali cattle had polymorphism. The lowest and high-

---

**Table 1:** Primer sequences for microsatellite ILSTS026, BMS1987, BMS2646, INRA072, BMS1248.

<table>
<thead>
<tr>
<th>Primer sequence forward and reverse (5'-3')</th>
<th>Annealing</th>
<th>Allele (bp)</th>
<th>Microsatellite markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer: CTGAATTGGGTCTCAGAGGGCTGC Primer: AAACAGAAAGTCCAGGGCTGC</td>
<td>58°C</td>
<td>150-158 bp</td>
<td>ILSTS026</td>
</tr>
<tr>
<td>Primer: TGATGCAGAGAACGTATTAG Primer: CTTGGGGTTAGGCCAGATTTT</td>
<td>58°C</td>
<td>109 bp</td>
<td>BMS1987</td>
</tr>
<tr>
<td>Primer: CAAGGCCATAAGAAGCAATTA Primer: CCTTCTATAGTGGTGACTACCC</td>
<td>58°C</td>
<td>286-298 bp</td>
<td>BMS2646</td>
</tr>
<tr>
<td>Primer: CTGACTCTTACCTAACAAGTPrimer: AGTGATTGAGCATTTGGCGCAT</td>
<td>58°C</td>
<td>100-126 bp</td>
<td>INRA072</td>
</tr>
<tr>
<td>Primer: GTAATGAGCCCTTTGTTGCC Primer: TCACCAACATGAGATGTTGC</td>
<td>58°C</td>
<td>122-164 bp</td>
<td>BMS1248</td>
</tr>
</tbody>
</table>

**Table 2:** Number of allele per locus, size and frequency in bali cattle

<table>
<thead>
<tr>
<th>Locus</th>
<th>Number of Allele</th>
<th>Allele size</th>
<th>Allele Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1248</td>
<td>8</td>
<td>133</td>
<td>14.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135</td>
<td>9.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139</td>
<td>11.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>144</td>
<td>14.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>147</td>
<td>11.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149</td>
<td>11.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>153</td>
<td>14.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159</td>
<td>11.90</td>
</tr>
<tr>
<td>INRA072</td>
<td>8</td>
<td>118</td>
<td>47.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>133</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>138</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>153</td>
<td>2.38</td>
</tr>
<tr>
<td>BMS2646</td>
<td>3</td>
<td>285</td>
<td>35.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>292</td>
<td>52.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>11.90</td>
</tr>
<tr>
<td>BMS1987</td>
<td>6</td>
<td>105</td>
<td>23.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>38.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116</td>
<td>19.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121</td>
<td>9.52</td>
</tr>
<tr>
<td>ILSTS026</td>
<td>4</td>
<td>150</td>
<td>9.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>155</td>
<td>45.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>156</td>
<td>9.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>35.71</td>
</tr>
</tbody>
</table>
est PIC values were 0.503 (locus BMS2646) to 0.859 (locus BM1248). The result of this study, indicated that the INRA072 and BMS1987 showed the greatest heterozygosity (0.905) and ILSTS026 the lowest one (0.429) (Table 3).

<table>
<thead>
<tr>
<th>Locus</th>
<th>HE</th>
<th>HO</th>
<th>PIC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1248</td>
<td>0.8943</td>
<td>0.8095</td>
<td>0.859</td>
</tr>
<tr>
<td>INRA072</td>
<td>0.6713</td>
<td>0.9048</td>
<td>0.6003</td>
</tr>
<tr>
<td>BMS2646</td>
<td>0.5981</td>
<td>0.5714</td>
<td>0.5025</td>
</tr>
<tr>
<td>BMS1987</td>
<td>0.7666</td>
<td>0.9048</td>
<td>0.7106</td>
</tr>
<tr>
<td>ILSTS026</td>
<td>0.6655</td>
<td>0.4286</td>
<td>0.5852</td>
</tr>
</tbody>
</table>

Table 3: Parameter of genetic information content, HE (Expected), and HO (Observed heterozygositys) of Bali cattle.

In the present study observed the number of alleles varied from three to eight with a mean of 5.80. Microsatellite BMS1248 markers on bali cattle were different compared with other cows (Machado et al., 2003). In Bali Cattle, microsatellite BMS1248 observed had eight alleles with 133 – 159 bp range of fragment length and in Canchim cows had four alleles 130-140 bp range of fragment length. In Bali Cattle, ILSTS026 had 4 alleles when compared with Bonsmara cattle (Greyling et al., 2008). Compared with other research in Indonesian cattle, the average number of alleles per locus in bali cattle population relatively low. In Katingan cattle was reported 13.6 allele, whereas in aceh cattle was reported 9.25 alleles (Utomo et al., 2011). However, the average number of alleles in bali cattle in this study much larger when compared with the other research. The average number of alleles per locus in bali cattle was reported 1.94 alleles (Winaya et al., 2007). The number of loci analyzed and sample size might be the reason for these different results. The average number of alleles depending on the number of loci analyzed (Rogic et al., 2011) and the number of alleles produced depending on the size of the sample (Fatima et al., 2008).

Based on the value of observed heterozygosity (Ho) for bali cattle, four microsatellite loci showed values above 0.5 and only one (ILSTS026) showed value below 0.5 and with average values 0.71. Locus INRA072 exhibits the greatest heterozygosity variability and was the most informative locus for bali cattle. According to observed heterozygosity, genetic variability level in bali cattle population were detected is higher compared to other Indonesian cattle. Polymorphism Information Content is an index which used to measure the informativeness of genetic marker and analyzed the degree of gene variance. Microsatellite loci considered as high polymorphism if PIC ≥ 0.5 and medium polymorphism if 0.5 <PIC<0.25 (Puja et al. 2013). In bali cattle, all of microsatellite loci has PIC values more than 0.5. Microsatellite loci showed PIC valued higher than 0.5 are considered as informative marker in genetic population analysis (Botstein et al., 1980). The high value of PIC indicated that the breeds are more heterogenous with no selection for certain traits. These findings are in agreement with research value in Hariana and Hissar cattle from Pakistan (Rehman and Khan, 2009), who used 30 microsatellite loci and obtained PIC values 0.749 in Hariana and 0.719 in Hissar cattle from Pakistan.

**Association between the Genotypes of DNA Microsatellite with Calving Interval and Gestation Period**

In bali cattle, the length of gestation period varied from 257 to 331 days. The average gestation length was 270.00±15.31 days. Calving interval is the average time interval (days or months) between successive calving both from the same cow. Calving interval for bali cattle ranged from 112 to 497 days with average 238.80 ± 84.86 days. The results showed that for microsatellite loci INRA072 was detected a significant correlation of markers with gestation period (p≤0.05) while BM2646 was detected a significant correlation of markers with calving interval (p≤0.05). Analysis on association between genotypes with calving interval and gestation period showed that the cattle possessing genotype of 118/129 bp on INRA072 lokc had the short gestation periodand genotypes of 292/300 bp on BMS2646 loci had the short calving interval.

In cattle, gestation length is influenced by factors such as the breed. The breed of cattle has the greatest influence on gestation length. The gestation length of 279 days in this study was shorter than 284.4±5.7 days reported for the breed in in some districts in Bali province between 1997 and 2003 (Prasjio et al., 2010). This gestation length in this study shorter than the other study may be due to the farm management and nutrition were much better. Nutrient intake can play as the most important to the of reproductive performance in cattle (Alam and Sarder, 2010).

The average of 238 days bali cow calving interval in this study were shorter than 365.6 days reported for the breed who breed in high and low placesin West Nusa Tenggara Province, Indonesia (Pribadi et al., 2015). Moreover, average calving interval in this study were shorter than 360.9 days reported by Breeding Centre of Bali Cattle in Bali province (Gunawan et al., 2011). Calving interval among the indigenous and crossbred cattle in the tropical country was reported within 365-536 days (Kamal, 2010).

The results of this study indicated associations of INRA072 and BM2646 markers on gestation length and calving interval. In relation to these results, calving interval and gestation length are reproductive traits that can be influenced by genotype. These data suggest these
Microsatellites might play a role on the regulation of the
gen that affect gestation length and calving interval. These
facts suggest the potential role of microsatellites in the reg-
ulation of gene expression.

CONCLUSION

According to the research of bali cattle population from
the 5 loci, bali cattle possessing typical genotypes of
118/129bp in INRA072 locus leded to possess short ges-
tation period, while bali cattle possessing typical genotypes
of 292/300 bp in BMS1646 loci had the short calving in-
terval. The associations observed in this study indicate the
possible utilization of INRA072 and BMS1646 marker in
this population to increase reproductive efficiency

ACKNOWLEDGEMENTS

The authors are thankful to the Ministry of Research,
Technology and Higher Education of the Republic of
Indonesia for financial support by Fundamental grant
research 2016. We also are thankful to Gde Soma, DVM
and Ni Made Raysa Merliana, DVM for technical assis-
tance to prepare the sample.

AUTHORS CONTRIBUTION

All of the authors have read and approved the manuscript.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interests.

REFERENCES

- Alam MM, Sarder MJU (2010). Effects of nutrition on
  production and reproduction of dairy cows in Bangladesh.
The Bangladesh Veterinarian. 27(1) : 8 – 17. https://doi.org/10.3329/bvet.v27i1.5910
  Construction of a genetic linkage map in man using
  restriction fragment length polymorphism. Am. J. Hum.
  Genet. 32 :314-331.
  variability and bottleneck studies in Zalawadi, Gohilwadi
  and Surti goat breeds of Gujarat (India) using microsatellites.
  P, Getz WM, Bastos ADS (2008). Development of a high-
  throughput microsatellite typing approach for forensic and
  population genetic analysis of wild and domestic African
  factors effect on reproductive performance and pre-weaning
  mortality from artificially and naturally bred in Bali
  https://doi.org/10.14710/jitna.36.2.83-90
- Kamal MM (2010). A review on cattle reproduction in
or/10.3923/ijds.2010.245.252
- Machado MBB, Alencar MM, Pereira AP, Oliveira HN, Casas
  E, Coutinho LL, Regitano LCA (2003). QTL affecting
  body weight in a candidate region of cattle chromosome 5.
  S1415-47572003000300008
- Prasolo G, Arifiantini I, Mohamad K (2010). The Correlation
  Between The Gestation Period, Birth Weight And New
  Born Calves Sex After Artificial Insemination Of Bali
  Cattle, Jurnal Veteriner. 11(1) : 41-45.
  Reproductive efficiency of Bali cattle and it’s crosses
  with Simmental breed in the lowland and highland areas of
  West Nusa Tenggara Province, Indonesia. Livestock Res.
  Rural Develop. 27(2).
- Puja IK, Wandoia IN, Sulabda IN, Susantika P (2013). Correlation
  Analysis of Microsatellite DNA Markers with Body Size,
  Lenght and Height of Bali Cattle. Global Veterinaria. 11
  (5) : 689-693.
- Rehman MS, Khan MS (2009). Genetic Diversity Of Hariana
  And Hissar Cattle From Pakistan Using Microsatellite
- Rogic B, Tomic L, Važić B, Jelić M, Jovanović S, Savić M
  (2011). Assessment of Genetic Diversity Of Buša Cattle
  From Bosnia and Herzegovina Using Microsatellite DNA
  https://doi.org/10.2298/ABS1104077R
  & Son, Inc. New York.
- Teneva A, Tomleva N, Goujgoulova G (2014). Major features,
  mutation mechanism and development of microsatellites as
- Utomo BN, Noor RR, Sumantri C, Supriatna I, Gurnardi E
  and their genetic relationship with some other local cattle
through DNA microsatellite analysis. JTVT. 16(2) : 112-125.
  untuk deteksi polimorfisme dan hubungan filogenetik pada