INTRODUCTION

That the xenobiotic metabolism is the biochemical modification by living organisms through the action of specialized enzymatic system. At the time of xenobiotic metabolism lipophilic chemical compounds are converted into hydrophilic compounds which are ready to excrete. That the xenobiotic metabolism which is divided into three phases. The glutathione S-transferases (GST) are most important xenobiotic metabolizing enzymes in phase II defence enzymes. Glutathione S-transferases (GSTs) (EC. 2.5.2.18) are belongs to a family of multifunctional enzymes which conjugate electrophilic intermediates with the endogenous tripeptide glutathione (GSH) (Hayes et al., 2005). Based on both functional and sequence similarities that the cytosolic GSTs are classified, which composed of two sub units (dimers) within the same class (Wilce and Parker, 1994). There are cytosolic, mitochondrial and membrane associated GSTs, but detoxification is the key function of cytosolic GSTs (Hayes et al., 2005). Mammalian cytosolic GSTs are extensively studied (Prova, 2006). GSTs play a key role in cellular detoxification, protection of macromolecules from reactive electrophiles, environmental carcinogens, reactive oxygen species and chemotherapeutic agents (Strange et al., 2000), which catalyse the nucleophilic addition of glutathione to several xenobiotics that including phase I electrophilic and carcinogenic metabolites (Senhaji et al., 2015; Nebert and Vasilou, 2004; Hayes and...
The GSTs can serve as peroxidases, isomerases and thiol transferases (Board et al., 2000).

Kumar et al. (1980) said that the relative specific activities of GSTs in various tissues of pigeon are as follows: kidney > liver > testes > brain > lung > heart. Quail liver cytosolic GSTs were purified by using S-hexylglutathione affinity column in tandem by a glutathione (GSH) affinity column and designated as QL 1, QL 2, QL 3a, QL 3b and QL 4 (Dai et al., 1996). Based on immunochemical studies, it was reported that the QL 1 and QL 2 are similar to the rat muscle GSTs, QL 3a and QL 3b are related to the rat and mouse alpha (α) class GSTs (Dai et al., 1996). N-terminal sequence of QL 2 is identical to the chicken muscle GST i.e CL 2 (Dai et al., 1996). The two initial valine residues which are on the N-terminals are unique character of bird muscle GSTs when compared the mammals (Dai et al., 1996).

Chang et al. (1990) was purified CL1, CL2, CL3, CL4 and CL5 GSTs from chicken liver by using S-hexylglutathione and glutathione (GSH) combination affinity column. Chang et al. (1992), Liu et al. (1993), alpha (α) class GST, Liu and Tam (1991) mu (μ) class GST, Hsiao et al. (1995) theta (θ) class GST and Thomson et al. (1998) sigma (σ) class GST cDNAs isolated by both cloning experiments and Expressed Sequence Tag (EST) database search from domestic chicken. It was reported that the CL1 (θ GST) and CL5 (σ GST) are not detected chick liver purified fraction by glutathione (GSH) affinity column (Hsieh et al., 1999). Chicken GSTs protein structure and DNA sequence are elucidated (Chang et al., 1990; Liu and Tam, 1991; Liu et al., 1993). Chick embryo brain GSTs were purified by using glutathione CL-agarose affinity column and designated them as CB1 and CB1’ (Dasari et al., 2016). Based on biochemical characterization, CB1 and CB1’ GSTs which related alpha (α) and mu (μ) class GSTs (Dasari et al., 2016).

Kim et al. (2011) was cloned six alpha (α) class GST subunits of turkey were cloned and expressed in E. coli. It was reported that the molecular weights of expressed rGSTA subunits were similar to the alpha (α) class GSTs (Kim et al., 2010). GSTs are ubiquitous multifunctional enzymes and they play an important role in detoxification of pesticides (Ezemonye and Tongo, 2010); carcinogens like mycotoxin aflatoxin B1 (AFB1) (Eaton and Bammler, 1999). GST has catalysed the addition of glutathione (GSH) to endogenous xenobiotics (Satheesh et al., 2010).

ENVIRONMENTAL TOXIC AGENTS AND OXIDATIVE STRESS

That the environment is whether intentionally or unintentionally loading with foreign chemical compounds (xenobiotics) which released by industries. But thousands of organic pollutants have been produced which released into environment from twentieth century (Helm et al., 2011). Many of such chemical agents are extremely stable, which hazard to the living organisms. That the stable organic pollutants which accumulate in all ecosystems and they are transported by air, water and migratory species and deposited in too distance from the place of their production (Choi and Wania, 2011).

That the oxidative stress can be characterized by either an oxidative burst or rapid and transient production of high levels of reactive oxygen species (ROS). That the oxidative burst can be inducing either directly by various pollutants or indirectly by their metabolism (Droge, 2002). Several mechanisms are there that the formation of oxidative stress by xenobiotics. That the free radicals which can readily react with biomolecules. They can have developed protection mechanism against oxidative stress, due to the inefficiency of protection mechanism, oxidative stress can damage biomolecules (Zhang et al., 2004). That the biochemical markers which can provide information about the health status of an organism and this can be used as early warning signals of particular stress (Korte et al., 2000).

DETOXIFICATION OF EXOGENOUS HAZARDOUS AGENTS BY GST

Glutathione S-transferases (GSTs) are detoxifying a large number of exogenous toxic agents like carcinogens, drugs and environmental pollutants as shown in Figure 1. That the chemotherapeutic agents of cancer such as Adriamycin, 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), busulfan, carmustine, chlorambucil, cis-platin, crotonoxymethyl-2-cyclohexenone (COMC-6), melphalan, mitomycin, thiopeta, cyclophosphamide and ethacrynic acid are detoxified by GSTs (Hamilton et al., 2003). Environmental chemicals and their metabolites like acrolein, atrazine, DDT, inorganic arsenic, lindane, Malathion, methyl parathion, muconaldehyde and tridiphane are detoxified by GST isoenzymes (Abel et al., 2004a, 2004b). A large number of epoxides like fosfomycin and those derived from environmental carcinogens, polycyclic aromatic hydrocarbons (PAHs) are detoxified by GST. Activated metabolites N-acetoxy-PhIP of heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) which produced by cooking protein–rich food is also detoxified by cystolic GST isoenzymes.

ACTIVATION OF XENOBIOTICS BY GST

The conjugation reaction catalysed by GST can form less reactive and readily excreted products. But in some cases that the glutathione (GSH) conjugate is more reactive than the parent compound like short chain alkyl halides that contain two functional groups and 1,2-dihaloethanes, where the GSH conjugate rearranges to form an episulfonium intermediate which responsible for DNA modifica-
That the moderately toxic compounds like allyl-, benzyl-, phenethyl-isothiocyanates and sulforaphane are reversibly conjugated with GSH by GST to form thiocarbamates which spontaneously degrade to their isothiocyanates by releasing GSH. Again that the isothiocyanates may be taken up by the cell and re-conjugated with GSH and then form thiocarbamate and then revert to the isothiocyanate. Due to this cyclic process, intracellular GSH levels are decreased and facilitate the distribution of isothiocyanates entire the body. Such isothiocyanate either low GSH content or not conjugated with GSH, but rather are more likely to thiocarbamate proteins, which result in cell death (Xu and Thornalley, 2001).

DEFENSIVE SYSTEM IN BIRDS

Especially in birds that the detoxification efficiency is depend on with diet composition (Ronis and Walker, 1989; Fossi et al., 1995) and sometimes it is associated with the metabolic rate (Ronis and Walker, 1989). Low rates of mitochondrial oxygen radical production and high blood glucose levels, which are the unique molecular mechanisms in birds than the other vertebrates and due to these unique character birds can easily defend free radicals and oxidative stress (Pamplona and Costantini, 2011). Recognizable attention is increasing that the balancing investment in antioxidant defences to sustain to oxidative damage has possibly influence life history traits (Monaghan et al., 2009). It is suggested that the up regulation of antioxidant system in free flying migrants which adapt their antioxidant system to the sustainability to extraordinary exercise at very high metabolic rate (Jenni-Eiermann et al., 2014).

GSTR IS A BIOMARKER IN BIRDS

GSTs are useful as biomarker in ecological risk assessment of pesticide contaminated environment (Ezeji et al., 2012). It was reported that the presence of glutathione S-transfases (GSTs) activity in wild birds (Witt and Snell, 1968). Mukhtar and Bresnick (1976) said that the GST is an inducible enzyme. It have been identified that the species differences in conjugation reactions, some birds use ornithine instead of glycine for conjugation with xenobiotics (Baldwin et al., 1960), it may be due to difference in evolutionary scale of avian species. That the significant level of GST activity in hepatic and extra hepatic tissues of pigeons are similar to the tissues of rodent. Pigeon hepatic GSTs were inducted with 3-methylcholanthrene (3-MC) (Kumar et al., 1980). It was reported that the various biomarkers are measure different aspects of redox balance, which suggests the careful planning is need at the level of designing certain study set up (Horak and Cohan, 2010). Glutathione related enzymes like GPx and GST are most prominent biomarkers in birds (Isaksson, 2010) and elevation of those enzyme activities was reported in white stork (Ciconia ciconia) (Kaminski et al., 2009), the pied flycatcher (Berglund et al., 2007), the great tit (Isaksson et al., 2005;
It was reported that the GST activity induction is an evolutionary response of cells to protect against metabolites and degenerative disorders which related to oxidative stress (Hayes et al., 2005; Raza, 2011). In Avian species, tissue distribution of GST is not similar to mammals; high renal specific activity is the most distinctive feature of Avian GST (Maurice et al., 1991). As shown in Figure 1, GST is expressed in response to both endogenous and exogenous toxic agents.

\[\text{Figure 1: Schematic diagram of toxic agents and glutathione S-transferase (GST)} \]

Usually, as shown in Figure 1, in normal metabolism toxic agents like reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed in cellular system. In addition to that, environments are loading with toxic chemical agents in the form of pesticides, insecticides, agriculture related chemical formulas, industrial effluents and motor vehicle pollutants etc. Because of highly mobile nature, birds are victimizing to these exogenous (xenobiotic) toxic agents by air, water and terrestrial. When the toxic agents enter into cellular system, they cause to oxidative stress in addition to deleterious effect of them. Glutathione S-transferase (GST) is expressed more and more to detoxify both endogenous and exogenous toxic insults.

Susceptibility of Birds

Poultry birds (domestic fowls) are victimizing to pesticide poisoning due to their tendency to eat pesticide contaminated food and other items in the environment (Ezeji et al., 2011). Domestic turkeys (Meleagris gallopavo) are one of the most susceptible species known to AFB1 (Klein et al., 2000; Rawal et al., 2010). The efficiency of GST conjugation is a principal "rate-limiting" determinant for AFB1 action in individuals and species (Ilic et al., 2010). The efficiency of GST conjugation is a principal "rate-limiting" determinant for AFB1 action in individuals and species (Ilic et al., 2010). Numerous studies have demonstrated that individual and species susceptibility to AFB1-induced toxicity and hepatocarcinogenicity is strongly associated with GST-mediated detoxification of AFBO (Monroe and Eaton, 1988). Acute and chronic toxic effects of AFB1, apparently because of the extremely high affinity toward AFBO exhibited by their hepatic Alpha-class A3 subunit (Bueltler et al., 1992; Hayes et al., 1992).

Comparative toxicology studies have shown that wild turkeys are substantially more resistant to AFB1 compared to domestic turkeys (Quist et al., 2000). But GSTs of the domestic turkeys have little or no AFBO affinity activity with AFB1 (Klein et al., 2002; 2003). Wild and heritage turkeys might contain potentially useful GST alleles not found in domestic birds (Kim et al., 2013).
ways which mediated by antioxidant enzymatic system. Birds are frequently encountering environmental xenobiotic substances which have hazardous biological activity. GSTs are the versatile toxic agents metabolizing enzymes among antioxidant enzymatic system. In birds, GSTs are playing major role in detoxification of toxic agents and also act as biomarker to evaluate the health condition of birds. The single amino acid change can alter the GST antioxidant activity. It is concluding that the GST can detoxify toxic agents in birds and an amino acid can change GST activity which leads to susceptibility of birds to various environmental toxic agents and endogenous toxic species.

ACKNOWLEDGEMENTS

Authors are thankful to University Grants Commission, New Delhi, India (Grant No: 20601/UGC-I (2)/RGNF/2007) for providing Financial Assistance.

CONFLICT OF INTEREST

Authors do not have any potential conflict of interest.

AUTHORS CONTRIBUTION

This review was written by DS, quality checked by GMS and technical guidance given by BM.

REFERENCES

