INTRODUCTION

Ovarian cysts (OC) represent one of the most common reproductive disorders affecting dairy herd fertility mainly during the postpartum period (Silvia et al., 2005; Vanholder et al., 2006; Purohit, 2008). OC result in prolongation of the calving interval, reduced milk production, increased culling rates (Bartlett et al., 1986; Fourichon et al., 2000) with significant economic losses to the dairy farmer (Scott and Dobson, 1997; Noble et al., 2000). The etiology of OC continues to be poorly understood (Jeengar et al., 2014). One key hormonal characteristic of cows with OC is lack of, or aberrant luteinizing hormone (LH) surge, although they have increased plasma 17-β estradiol (E2) concentration (Ribadu et al., 2000; Todoroki and Kaneko, 2006). Another explanation is a relative-ly high level of pulsatile secretion of LH that promotes continued growth of the dominant follicle (DF) (Todoroki and Kaneko, 2006). More recently, it was mentioned that altered follicular dynamics and cellular differentiations in
OC are mediated through altered steroid receptor expression as well as changes in the expression of their regulators (Silvia et al., 2002). It was suggested that the differentiation of granulosa cells to express 3β-HSD (3Beta-Hydroxysteroid dehydrogenase) might be insufficient in cystic follicles and accordingly they fail to ovulate. The differences in frequencies of 3β-HSD-positive cells in the granulosa and theca interna layers between cystic and atretic follicles may be one of the reasons why regression is delayed in cystic follicles (Isobe et al., 2003).

A plausible explanation to the formation of OC appears to be the lack of regression of DF. One study showed that the granulosa and theca interna cells of the bovine cystic ovarian follicles had weak proliferative activity and low apoptotic frequency which implied that the cystic ovarian follicle grows slowly and then maintained a static condition without degeneration, which lead to long term persistence of the follicle (Isobe and Yoshimura, 2007). An increase in follicle stimulating hormone (FSH) secretion following a reduction in inhibin secretion was shown to trigger turnover of cystic follicles in cows with spontaneous follicular cysts (Kengaku et al., 2007). Similarly stress increased secretion of progesterone and cortisol from the adrenal gland that exerted inhibitory effect on the LH and FSH surges, suppressed ovulation and led to formation of OC.

Vascular dysfunction (Rizzo et al., 2009a), an imbalance between reactive oxygen species (ROS) and antioxidants (Rizzo et al., 2009b), alterations in ovarian sympathetic nerve activity (Rizzo et al., 2011), severe negative energy balance (NEB) during postpartum period, with consequent reduction in peripheral plasma concentrations of insulin–like growth factors (IGFs), insulin, glucose and leptin (Lucy, 2003; Block et al., 2011), changes in the expression of heat shock proteins (hsp) in the granulosa and theca cells of the follicular wall (Velázquez et al., 2011) are also considered contributing factors, for the onset of OC in dairy cows.

In humans thyroid disorders have been associated with ovarian hyper-stimulation syndrome (OHSS) (Vasseur et al., 2003; Shu et al., 2011) and with polycystic ovary syndrome (PCOS) (Jung et al., 2011). Both hypothyroidism (Shu et al., 2011) and hyperthyroidism (Jung et al., 2011) have been associated with OC in pre-menopausal women. Among domestic species, lactating dairy cows are typically hypothyroid. The peripheral deiodination of thyroxine (T4) to produce the more potent triiodothyronine (T3) is especially important to maintain function of many target cells and tissues (Husveth, 2011). Plasma T3, T4, and thyroid-stimulatory hormone (TSH) were typically low during early lactation in dairy cows (Gueorgiev, 1999; Fiore et al., 2015) and it is this period when most OC form in dairy cows.

Blood was collected from all cows with OC (n=40) before and after treatment (10 days after last treatment) and plasma was separated and stored at -20°C till assay by enzyme immunoassay. The plasma T3, T4, TSH and progesterone was estimated by enzyme immunoassay using commercially available kits (Calbiotech, Spring valley, USA). Blood was also collected from cows without OC (control, n=8).

Cows with OC were randomly treated with either SC injection of 2.5mg Levothyroxine (LV), oral feeding (10 gm daily for 5 days) of potassium iodide (KI), GnRH (40 µg, IM injection Day 0) + Progesterone (750 mg, IM injection Day 0) + KI (GPI), or Ov-Synch protocol + Progesterone (OVP). Levothyroxine 2.5mg SC was administered at 8 am in the morning and repeated every 48 h for 4 occasions. (Levothyroxine 25 tablets of 100µg were dissolved in sterile distilled water and administered SC observing all aseptic precautions). The body weight of cows in the present study varied between 250-350 Kg and based on a previous suggestion of SC administration of 10µg/kg levothyroxine (EMEA, 1998) the present dose was used.

The prognosis was determined by hormonal profile changes. The treated animals were inseminated in the estrus following treatment and the conception rate was determined.
Table 1: The mean values of plasma T3, T4 and TSH in cows with ovarian cysts and without ovarian cysts (control)

<table>
<thead>
<tr>
<th>Group</th>
<th>T3 (nmol/L)</th>
<th>T4 (ng/mL)</th>
<th>TSH (µU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>Post treatment</td>
<td>Pre-treatment</td>
</tr>
<tr>
<td>LV</td>
<td>2.56±0.17A</td>
<td>3.17±0.13B</td>
<td>21.95±1.59A</td>
</tr>
<tr>
<td>KI</td>
<td>2.36±0.19A</td>
<td>2.76±0.20A</td>
<td>20.70±1.07A</td>
</tr>
<tr>
<td>GPI</td>
<td>2.58±0.18A</td>
<td>2.75±0.18A</td>
<td>23.43±1.43A</td>
</tr>
<tr>
<td>OVP</td>
<td>2.58±0.18A</td>
<td>2.59±0.15A</td>
<td>21.24±1.41A</td>
</tr>
<tr>
<td>Control</td>
<td>3.04±0.10B</td>
<td>-</td>
<td>37.80±2.85B</td>
</tr>
</tbody>
</table>

Values with different superscripted letters in a column (a, b, c) or row (A,B,C) are significantly different (P≤0.05 for T3 and P≤0.01 for T4 and TSH).

RESULTS

PLASMA PROGESTERONE
Mean plasma progesterone concentrations in cows with ovarian cysts (0.67±0.13 ng/ml, 0.64±0.08 ng/ml, 0.62±0.12 ng/ml and 0.64±0.11 ng/ml in LV, KI, GPI and OVP groups respectively) at presentation were significantly higher (P<0.01) compared to normal cows (0.18±0.02 ng/mL). Overall out of 40 cows with OC 80% were follicular type cysts and 20% were luteal cysts. A high proportion (65.62%) of cows with follicular cysts had a plasma progesterone concentration between 0.1-0.5 ng/mL; whereas 34.38% (11/32) cows with follicular cysts revealed plasma progesterone concentrations from 0.51-1 ng/mL. All cows with luteal type of cysts had plasma progesterone concentrations above 1.0 ng/mL.

PLASMA TRIIODOTHYRONINE (T3), THYROXINE (T4) AND THYROID STIMULATING HORMONE (TSH)
The mean plasma T3 concentration was significantly lower (P≤0.05) in cows with ovarian cysts compared to cows without ovarian cysts. The mean plasma concentration of T3 in cows with ovarian cysts increased to reach normal levels subsequent to therapy with levothyroxine only. In all other treatments the mean plasma T3 concentration continued to be lower (Table 1).

The mean plasma T4 concentrations was significantly lower (P≤0.01) in cows with ovarian cysts compared to cows without ovarian cysts. The mean plasma concentration of T4 in cows with ovarian cysts increased to reach normal levels subsequent to therapy with levothyroxine only. However, the values were still lower compared to cows without ovarian cysts. In all other treatment groups the mean plasma T4 concentrations were not altered compared to values before treatment (Table 1) or the control.

DISCUSSION
The plasma progesterone concentrations associated with cystic ovaries in this study were similar to those in plasma or milk previously reported in cows with induced or spontaneously occurring cysts (Ribadu et al., 1994; Robinson et al., 2006; Roth et al., 2012; Mutinati et al., 2013; Pusph et al., 2016).

There were 21 cows with follicular cysts which evidenced plasma progesterone concentrations between 0.1-0.5 ng/ml, while 11 cows with follicular cysts had evidenced plasma progesterone concentrations between 0.51-1 ng/ml at presentation. Cows with plasma progesterone concentrations between 0.51-1 ng/ml at presentation probably had partially luteinized follicular cysts. Some studies have revealed that suprabasal progesterone (adrenal secretions) might be responsible for enhanced progesterone levels in animals with follicular cysts (Wagner et al., 1972; Patterson et al., 1995; Dobson et al., 2000).

Eight cows with luteal cysts evidenced plasma progesterone concentrations of greater than 1 ng/ml on the day of presentation. Similar findings have been recorded in many previous studies (Narayana and Honnappa, 1985; Farin et al., 1990; Douthwaite and Dobson 2000). In fact ovarian cysts have been classified on the basis of the plasma progesterone concentrations. While Farin et al. (1992) considered greater than 0.5 ng/ml concentrations as luteal cysts compared to cows without ovarian cysts. In all other treatment groups the mean plasma T4 concentrations were not altered compared to values before treatment (Table 1) or the control.

ESTRUS AND PREGNANCY
Of the total 10 cows treated in each group only 1, 0, 5 and 8 cows evidenced normal estrus in the group LV, KI, GPI and OVP treatments respectively. The overall pregnancy rates for the total number of cows that were treated was 10%, 0%, 30% and 50% respectively for the LV, KI, GPI and OVP treatments respectively.
The concentration of T3 under different groups before therapy appeared to be significantly lower to that of control group with normal estrus (Mutinati et al., 2013). This significant difference in T3 value proves that hypothyroidism have some role to play in OC, as steroid–independent decline in LH pulse frequency has been mentioned to be dependent on presence of thyroid hormones (Anderson et al., 2002). A study using non-lactating cows showed that estrus behavior was unaffected by hypothyroidism induced by thyroidectomy (Stewart et al., 1993). When T3 concentrations were depressed by the induction of hypothyroid in lactating heifers, progesterone concentrations at day 14 of the cycle were significantly lower than those in control animals (Thrift et al., 1999a, Thrift et al., 1999b). Thus, it may be hypothesized that low T3 was associated with low reproductive performance in cows during postpartum period. However, more studies are required. Following therapy with levothyroxine, value of T3 became significantly higher compared to that of other groups and reached near to control thus proving efficacy of treatment to bring back T3 values to that of normal ones as recorded in previous studies (Miller et al., 1965; Moraes et al., 1998).

Concentration of T4 in control cows in our observation correspond to the concentrations reported by other authors (Gueorgiev, 1999; Sinka et al., 2008; Djoković et al., 2010). The value of T4 observed under the different groups in the present study before treatment were similar in all groups but significantly lower compared to the control group as observed previously in cows with ovarian cysts (Mutinati et al., 2013). A significant (P≤0.01) increase in T4 concentration (21.95±1.59 to 28.62±1.37) was observed in LV group cows following therapy whereas other treatments had no effect.

Comparison of pre-treatment values of plasma TSH in group LV, group KI, group GPI, group OVP with untreated cows without ovarian cysts revealed significant differences. Concentration of TSH in control cows in our observation correspond to the concentrations reported by other authors (Gvozdic et al., 2008; Alameen and Abdelatif, 2012). The concentration of TSH under different groups before therapy appeared to be significantly higher compared to that of control group with normal estrus that means there is hypo function of the thyroid gland in cows with ovarian cysts as also recorded in a previous study in cows (Mutinati et al., 2013). The higher estrogen blood concentrations found in cows with OC compared to cyclic subjects, in turn, could contribute to a reduction in TSH pituitary synthesis, given the strict relationship between estrogens and the hypothalamic-pituitary-thyroid axis as inferred by Léan et al. (1977) and later confirmed by Bottnier et al. (2006). Mutinati et al. (2013) have shown that cows with OC have reduced TSH concentrations.

In terms of resumption of normal estrus and subsequent pregnancy the administration of KI orally revealed the poorest results and OVP treatment the best however, more studies are needed to include levothyroxine along with OVP or GPI to reveal whether improvement in the marginal thyroid hormone concentrations can help in recovery from ovarian cysts in dairy cows.

CONCLUSION

It was concluded that thyroidal hormone levels are low in cows with OC, the treatment with levothyroxine resulted in positive alteration in thyroidal hormone without affecting pregnancy rates.

ACKNOWLEDGMENTS

The authors are highly thankful to the Dean College of Veterinary and Animal Sciences, Bikaner, Rajasthan, India for provision of the facilities required for conducting the study.

CONFLITS OF INTEREST

The authors have no conflict of interest.

AUTHORS CONTRIBUTION

The present study is a part of work carried out for MVSc research by Mukesh Meena under the guidance of Prof G N Purohit.

REFERENCES

- Block SS, Butler WR, Ehrhardt RA, Bell AW, Van Amburgh
Bugalia NS, Kohli IS (1981). Comparative efficacy of proluton
Dobson H, Ribadu AY, Noble KM, Tebble JE, Ward WR

Advances in Animal and Veterinary Sciences

• Léan AD, Ferland L, Drouin J, Kelly PA, Labrie F (1977). Modulation of pituitary thyrotropin releasing hormone receptor levels by estrogens and thyroid hormones. Endocrinol. 100(6):1496-1504. https://doi.org/10.1210/endo-100-6-1496

• Patterson DJ, Hall JB, Bradley NW, Schillo KK, Woods BL, Kearnan JM (1995). Improved synchrony, conception rate, and fecundity in parturient suckled beef cows fed...
Advances in Animal and Veterinary Sciences

